Abstract:
A gas turbine combustor includes a liner having a forward end and an aft end; a flow sleeve surrounding the liner, the flow sleeve also having forward and aft ends, the aft end of the flow sleeve supporting an annular ring formed with a plurality of cooling bores and extending through the flow sleeve, at least some of the plurality of cooling bores formed at an acute angle relative to a longitudinal axis of the liner.
Abstract:
A method is provided for operating an air-staged diffusion nozzle for a gas turbine combustor to cool the nozzle tip and improve mixing of gas fuel and air within a downstream burner space. Air is mixed with the gas-fuel in an outer swirler and expanded in a downstream burner tube space. Compressed air from a cooling air cavity in the nozzle flows through an inner swirler, passing downstream from the tip of the nozzle to the burner tube space, cooling the nozzle tip and improving the mixing of the gas-fuel with air, thereby reducing emissions from the gas turbine and reducing soot formation in startup. Direction and rotation of the discharged air from the nozzle tip into the burner space may be arranged to promote nozzle tip cooling and gas-fuel mixing with air.
Abstract:
A combustion liner for a combustor of a turbine engine includes a plurality of undulations which extend around the exterior circumference of the combustion liner. A plurality of rows of cooling holes are formed through the combustion liner. Each row of cooling holes is located in one of the undulations which extends around the exterior circumference of the combustion liner. The cooling holes admit a flow of cooling air into the interior of the combustion liner. The cooling holes are located and oriented to help the flow of cooling air form a film along the inner surface of the combustion liner.
Abstract:
A method facilitates assembling a gas turbine engine including a combustor assembly and a nozzle assembly. The method comprises providing a transition piece including a first end, a second end, and a body extending therebetween, where the body includes an inner surface, an opposite outer surface, coupling the first end of the transition piece to the combustor assembly, and coupling the second end of the transition piece to the nozzle assembly such that a turbulator extending helically over the outer surface of the transition piece extends from the transition piece first end to the transition piece second end to facilitate inducing turbulence to cooling air supplied to the combustor assembly.
Abstract:
A gas turbine combustor includes a liner having a forward end and an aft end; a flow sleeve surrounding the liner, the flow sleeve also having forward and aft ends, the aft end of the flow sleeve supporting an annular ring formed with a plurality of cooling bores and extending through the flow sleeve, at least some of the plurality of cooling bores formed at an acute angle relative to a longitudinal axis of the liner.
Abstract:
A fuel nozzle for a gas turbine includes an annular passage configured to flow a fuel and a disk concentric with and disposed at a second end of the annular passage. The disk extends radially outward from the second end. A plurality of passages extend through the disk and are configured to impart swirl to a working fluid flowing through the passages. A shroud including an upstream end axially separated from a downstream end surrounds the disk and extends downstream from the disk.
Abstract:
The present invention provides a hula seal for use with a combustor. The hula seal includes a number of legs that define a number of slots. The slots may include a number of expansion slots.
Abstract:
A method is provided for operating an air-staged diffusion nozzle for a gas turbine combustor to cool the nozzle tip and improve mixing of gas fuel and air within a downstream burner space. Air is mixed with the gas-fuel in an outer swirler and expanded in a downstream burner tube space. Compressed air from a cooling air cavity in the nozzle flows through an inner swirler, passing downstream from the tip of the nozzle to the burner tube space, cooling the nozzle tip and improving the mixing of the gas-fuel with air, thereby reducing emissions from the gas turbine and reducing soot formation in startup. Direction and rotation of the discharged air from the nozzle tip into the burner space may be arranged to promote nozzle tip cooling and gas-fuel mixing with air.
Abstract:
One exemplary embodiment of a fuel nozzle flange includes an elongated flange body including a radial mounting flange at an aft end thereof and a face surface at a forward end thereof. The flange body has a first, axially-oriented through-bore adapted to receive a first fuel supply pipe at the forward end; a second, radially-oriented bore intersecting the first axially-oriented bore and adapted to receive a second fuel supply pipe; and a third axially-oriented through-bore adapted to receive one end of a flame detector device at the forward end.
Abstract:
A venturi assembly for a turbine combustor includes a first outer annular wall and a second intermediate annular wall radially spaced from each other in substantially concentric relationship. The first outer annular wall and said second intermediate annular wall shaped to define a forward, substantially V-shaped throat region, and an aft, axially extending portion. A third radially innermost annular wall is connected to the second intermediate annular wall at an aft end of said throat region. A first plurality of apertures is provided in the first outer annular wall in the substantially V-shaped throat region, and a second plurality of apertures is provided in the aft, axially extending portion of said second intermediate annular wall so that cooling air flows through the first and second pluralities of apertures to impingement cool the third radially innermost annular wall.