摘要:
A method of manufacturing a PMR writer is disclosed that minimizes pole erasure during non-writing and maximize write field during writing by including an AFM-FM phase change material spacer that is in an AFM state during non-writing and switches to a FM state by heating during writing. The main pole layer including the write pole may be formed as a laminated structure by a sputter deposition process wherein a plurality of “n” ferromagnetic layers and “n−1” AFM-FM phase change material layers are laid down in an alternating manner. The AFM-FM phase change material is preferably a FeRh or FeRhX alloy (X=Pt, Pd, or Ir) having a Rh content >35 atomic %, and may also be used as a flux gate to prevent yoke flux from leaking into the write pole tip.
摘要:
A method of forming a TAMR (Thermal Assisted Magnetic Recording) write head that uses the energy of optical-laser generated edge plasmons in a plasmon antenna to locally heat a magnetic recording medium and reduce its coercivity and magnetic anisotropy. The method incorporates forming a magnetic core within the plasmon antenna, so the antenna effectively becomes an extension of the magnetic pole and produces a magnetic field whose maximum gradient overlaps the region being heated by the edge plasmons generated in the conducting layer of the antenna surrounding the antenna's magnetic core.
摘要:
A perpendicular magnetic recording (PMR) head is fabricated with a pole tip shielded laterally by a pair of symmetrically separated side shields that extend from an edge of a trailing edge shield to form a shield with the shape of a π. The easy axis direction of the side shields is in the in-track direction. As a result, the side shields effectively shield the fringing fields of the magnetic pole tip from causing adjacent track erasures, while not adding their own fringing fields that could cause erasures even beyond adjacent tracks.
摘要:
A TAMR (Thermal Assisted Magnetic Recording) writer has a narrow pole tip with a trailing edge magnetic shield. The narrow pole tipped write head uses the energy of laser generated edge plasmons, formed in a plasmon generating layer, to locally heat a PMR magnetic recording medium below its Curie temperature, Tc. When combined with the effects of the narrow tip, this local heating to a temperature below Tc is sufficient to create good transitions and narrow track widths in the magnetic medium. The write head is capable of writing effectively on state-of-the-art PMR recording media having Hk of 20 kOe or more.
摘要:
Various embodiments of a TAMR head having a magnetic core antenna (MCA) with a recessed plasmon layer are disclosed. An end of the plasmon layer is separated from the ABS by a magnetic layer that transmits the plasmon mode from the plasmon layer and transmits magnetic flux from an adjacent main pole layer. Both of the MCA and magnetic layer may have a triangular shape from an ABS view. There may be a non-magnetic separation layer between the MCA magnetic core and the main pole. Furthermore, a magnetic shield may be included with a side at the ABS, a side facing an end of a waveguide that transmits electromagnetic radiation to the MCA, and a side facing an edge of the plasmon layer. The recessed plasmon layer allows an improved overlay of the thermal heating spot on the magnetic field gradient at the magnetic medium that provides better TAMR performance.
摘要:
A magnetic shield in which all domain patterns and orientations are stable and which are consistently repeated each time the shield is exposed to an initialization field, is disclosed. This is achieved by giving it a suitable shape which ensures that all closure domains can align themselves at a reduced angle relative to the initialization direction while still being roughly antiparallel to each other. Most, though not all, of these shapes are variations on trapezoids.
摘要:
It is necessary to stabilize the free layer of GMR or TMR devices by providing a longitudinal bias field. As read tracks become very narrow, this field can drastically reduce the strength of the output signal. This problem has been overcome by adding an additional bias layer. This layer, which may be located either above or below the conventional bias layer, is permanently magnetized in the opposite direction to that of the permanent magnets used to achieve longitudinal stability. Through control of the magnetization strength and location of this additional bias layer, cancellation of much of the field induced in the free layer by the conventional bias layers is achieved.
摘要:
A perpendicular magnetic recording (PMR) head with single or double coil layers has a small write shield stitched onto a main write shield. The stitched shield allows the main write pole to produce a vertical write field with sharp vertical gradients that is reduced on both sides of the write pole so that adjacent track erasures are eliminated. From a fabrication point of view, both the main pole and the stitched shield are defined and formed using a single photolithographic process, a trim mask and CMP lapping process so that the main shield can be stitched onto a self-aligned main pole and stitched shield.
摘要:
A hard bias (HB) structure for biasing a free layer in a MR sensor within a magnetic read head is comprised of a main biasing layer with a large negative magnetostriction (λS) value. Compressive stress in the device after lapping induces a strong in-plane anisotropy that effectively provides a longitudinal bias to stabilize the sensor. The main biasing layer is formed between two FM layers, and at least one AFM layer is disposed above the upper FM layer or below the lower FM layer. Additionally, there may be a Ta/Ni or Ta/NiFe seed layer as the bottom layer in the HB structure. Compared with a conventional abutted junction exchange bias design, the HB structure described herein results in higher output amplitude under similar asymmetry sigma and significantly decreases sidelobe occurrence. Furthermore, smaller MRWu with a similar track width is achieved since the main biasing layer acts as a side shield.
摘要翻译:用于偏置磁读头内的MR传感器中的自由层的硬偏置(HB)结构包括具有大的负磁致伸缩(λS S S S S)值的主偏置层。 研磨后装置中的压缩应力引起强的面内各向异性,其有效地提供纵向偏压以稳定传感器。 主偏置层形成在两个FM层之间,并且至少一个AFM层设置在上FM层上方或下FM层的下方。 另外,可以存在作为HB结构中的底层的Ta / Ni或Ta / NiFe种子层。 与传统的邻接结交换偏置设计相比,本文所述的HB结构在类似的不对称西格玛下产生更高的输出幅度,并显着降低旁瓣发生。 此外,由于主偏置层用作侧屏蔽,所以实现了具有相似轨道宽度的较小MRWu。
摘要:
A perpendicular magnetic recording (PMR) head with single or double coil layers has a small write shield stitched onto a main write shield. The stitched shield allows the main write pole to produce a vertical write field with sharp vertical gradients that is reduced on both sides of the write pole so that adjacent track erasures are eliminated. From a fabrication point of view, both the main pole and the stitched shield are defined and formed using a single photolithographic process, a trim mask and CMP lapping process so that the main shield can be stitched onto a self-aligned main pole and stitched shield.