Abstract:
As track densities increase, it becomes increasingly important, while writing in a given track, not to inadvertently write data in adjoining tracks. This problem has been overcome by limiting the width of material in the ABS plane to what it is at the write gap. The part of the lower pole that is wider than this is recessed back away from the ABS, thereby greatly reducing its magnetic influence on adjacent tracks. Four different embodiments of write heads that incorporate this notion are described together with a description of a general process for their manufacture.
Abstract:
A basic design is disclosed for bottom shield (S1) and top shield (S2) of the reader shields in a magnetic read-write head. The critical part of new design includes an antiferromagnetic film which pins an antiferromagnetically coupled trilayer (AFCT). The simplest embodiment for top shield, for example, would be a film sequence of FM/Ru/FM/AFM. This replaces the normal top shield design which typically comprises a ferromagnetic seed layer and a thicker plated ferromagnetic film. Processes for manufacturing these shields are also described.
Abstract:
A method is disclosed for forming a magnetic shield in which all domain patterns and orientations are stable and which are consistently repeated each time said shield is exposed to an initialization field. The shield is given a shape which ensures that all closure domains can align themselves at a reduced angle relative to the initialization direction while still being roughly antiparallel to one another. Most, though not all, of these shapes are variations on trapezoids.
Abstract:
Reader asymmetry control has become an important issue as track widths continue to shrink. This has been achieved by providing adaptive adjustment to the asymmetry of individual heads in the form of an additional permanent hard magnet, which may be internal or external to the head. This special ‘tuning’ magnet biases the shields and the sensor to achieve suitable asymmetry and/or amplification. Head bias adjustments may be done individually or in batch. Both the internal and the external magnet versions are described.
Abstract:
A magnetic read/write head and slider assembly and method for forming said magnetic read/write head and slider assembly, wherein said assembly has improved heat spreading and dissipation properties and exhibits significantly reduced thermal protrusion during operation. The method consists of the formation of a heat sink layer on a portion of either the upper pole yoke or the lower magnetic pole of the writer.
Abstract:
A method of fabricating a magnetic read/write head and slider assembly, wherein the assembly has improved heat spreading and dissipation properties and the read/write head exhibits significantly reduced thermal protrusion during operation. The method of fabrication is simple and efficient, involving only the extension of at least one of the conductive mounting pads so that it is in thermal contact with a portion of the slider surface that is directly above the read/write element.
Abstract:
A method is disclosed for forming a magnetic shield in which all domain patterns and orientations are stable and which are consistently repeated each time said shield is exposed to an initialization field. The shield is given a shape which ensures that all closure domains can align themselves at a reduced angle relative to the initialization direction while still being roughly antiparallel to one another. Most, though not all, of these shapes are variations on trapezoids.
Abstract:
A basic design is disclosed for bottom shield (S1) and top shield (S2) of the reader shields in a magnetic read-write head. The critical part of new design includes an antiferromagnetic film which pins an antiferromagnetically coupled trilayer (AFCT). The simplest embodiment for top shield, for example, would be a film sequence of FM/Ru/FM/AFM. This replaces the normal top shield design which typically comprises a ferromagnetic seed layer and a thicker plated ferromagnetic film. Processes for manufacturing these shields are also described.
Abstract:
A magnetic shield in which all domain patterns and orientations are stable and which are consistently repeated each time said shield is exposed to an initialization field, is disclosed. This has been achieved by giving it a suitable shape which ensures that all closure domains can align themselves at a reduced angle relative to the initialization direction while still being roughly antiparallel to one another. Most, though not all, of these shapes are variations on trapezoids.
Abstract:
A thin film diode and method of fabrication having large current capability and low-turn on voltage is provided as a switching or protective device against electrostatic discharge in integrated devices such as magnetoresistive sensors and the like. A first semiconductor thin film layer of NiO.sub.x having p type properties is disposed on an arbitrary substrate, such as alumina, glass, silicon dioxide, silicon and the like. A second semiconducting layer of tin oxide or indium oxide or other transparent oxide is joined to the first layer to form a p/n junction. In one method of fabrication, the p/n junction is formed in a sputtering process under a partial oxygen pressure to control the stoichiometry of the films. Gold and Gold Indium contacts are attached to the films to provide electrical contacts. The device is enclosed in a protective coating and connected in parallel with an electronic device subject to electrostatic discharge.