摘要:
A method for the inspection and repair of a tube includes electrical discharge machining an access hole into the tube, optionally at or near the uppermost location on the tube, near the upper header; performing inspection of the tube, optionally using a visual or an eddy current inspection technique; providing an inner diameter flush-mounted plug insert which has been machined for re-inserting into the access hole; and attaching the plug insert to the tube.
摘要:
A method for the inspection and repair of a tube includes electrical discharge machining an access hole into the tube, optionally at or near the uppermost location on the tube, near the upper header; performing inspection of the tube, optionally using a visual or an eddy current inspection technique; providing an inner diameter flush-mounted plug insert which has been machined for re-inserting into the access hole; and attaching the plug insert to the tube.
摘要:
A method for repairing a heat recovery steam generator (HSRG) header to tube attachment damage, includes providing an access window in the header opposite the damaged header to tube attachment location; removing the header to tube attachment damage; inserting a tapered stub tube into a header penetration centered axially immediately over the tube; effecting a profile weld between the header and the tapered stub tube at the header penetration from the inside surface of the header; welding the tapered stub tube to the existing tube through the header inside diameter; welding shut the access window; and completing a post weld heat treatment of all the welds.
摘要:
A method for repairing a heat recovery steam generator (HSRG) header to tube attachment damage, includes providing an access window in the header opposite the damaged header to tube attachment location; removing the header to tube attachment damage; inserting a tapered stub tube into a header penetration centered axially immediately over the tube; effecting a profile weld between the header and the tapered stub tube at the header penetration from the inside surface of the header; welding the tapered stub tube to the existing tube through the header inside diameter; welding shut the access window; and completing a post weld heat treatment of all the welds.
摘要:
Accordingly, the present invention provides a weld filler composition for joining different alloy steel pieces with substantially different chromium content, such as joining low alloy ferritic steel to high alloy ferritic steel, low alloy ferritic steel to austenitic stainless steel, or high alloy ferritic steel to austenitic stainless steel, and a method using the same. In one embodiment, the present invention provides a composition for a weld filler comprising nickel, iron, and chromium, which collectively comprise at least 50% by weight of the weld filler; niobium, carbon, manganese, molybdenum, and silicon, which collectively comprise no more than 50% by weight of the weld filler, and a niobium to carbon ratio of approximately 20 or less.
摘要:
A method for repairing a heat recovery steam generator (HSRG) header to tube attachment damage, includes providing an access window in the header opposite the damaged header to tube attachment location; removing the header to tube attachment damage; inserting a tapered stub tube into a header penetration centered axially immediately over the tube; effecting a profile weld between the header and the tapered stub tube at the header penetration from the inside surface of the header; welding the tapered stub tube to the existing tube through the header inside diameter; welding shut the access window; and completing a post weld heat treatment of all the welds.
摘要:
In one embodiment, the present invention provides a method for welding together two metal pieces, comprising buttering a surface of a first metal piece with a first nickel-based filler metal at a thickness sufficient to isolate a heat-affected zone in the first metal piece from subsequent welding; heat-treating at least the heat-affected zone in the first metal piece; buttering a surface of a second metal piece with a second nickel-based filler metal having the same composition as the first nickel-based filler metal and at a thickness sufficient to isolate a heat-affected zone in the second metal piece from subsequent welding; heat-treating at least the heat-affected zone in the second metal piece; and welding the heat-treated first buttered surface to the heat-treated second buttered surface with a third nickel-based filler metal having the same composition as the first and second nickel-based filler metals.