Abstract:
A two-way flow control device including: a housing defining a first opening interface and a second opening interface, a rotor having a plurality of blades, each blade controllable to be angled in a range of positive and negative blade angles to generate respective positive and negative flows between the first opening interface and the second opening interface, first stator vanes mounted to the housing between the blades and the first opening interface, each including a respective stator vane slope having a stator vane angle which are collectively positive or negative angled; second stator vanes mounted to the housing between the blades and the second opening interface, each including a respective stator vane slope having a stator vane angle which are collectively opposite angled to the stator vane angles of the first stator vanes, the second stator vanes mounted to be circumferentially offset with respect to the first stator vanes.
Abstract:
A system for infrasonic pressure fluctuation (infrasound) control of a structure defining an interior. The system includes a reversible compressor including a housing defining an interior opening interface open to the interior of the structure and an exterior opening interface open to an exterior of the structure, and including at least one controllable element to generate positive pressure flows and negative pressure flows between the interior opening interface and the exterior opening interface. The system includes a first pressure sensor located to sense pressure indicative of the interior of the structure, a second pressure sensor located to sense pressure indicative of the exterior of the structure, and at least one controller configured to control the at least one controllable element of the compressor to cancel pressure oscillations within the interior of the structure based on the pressures detected by the first pressure sensor and the second pressure sensor.
Abstract:
A system for infrasonic pressure fluctuation (infrasound) control of a structure defining an interior. The system includes a reversible compressor including a housing defining an interior opening interface open to the interior of the structure and an exterior opening interface open to an exterior of the structure, and including at least one controllable element to generate positive pressure flows and negative pressure flows between the interior opening interface and the exterior opening interface. The system includes a first pressure sensor located to sense pressure indicative of the interior of the structure, a second pressure sensor located to sense pressure indicative of the exterior of the structure, and at least one controller configured to control the at least one controllable element of the compressor to cancel pressure oscillations within the interior of the structure based on the pressures detected by the first pressure sensor and the second pressure sensor.
Abstract:
A system and a method for producing silicon from a SiO2-containing material that includes solid SiO2. The method uses a reaction vessel including a first section and a second section in fluid communication with said first section. The method includes: heating the SiO2-containing material that includes the solid SiO2 to a SiO2-containing material that includes liquid SiO2, at a sufficient temperature to convert the solid SiO2 into the liquid SiO2; converting, in the first section, the liquid SiO2 into gaseous SiO2 that flows to the second section by reducing the pressure in the reaction vessel to a subatmospheric pressure; and reducing, in the second section, the gaseous SiO2 into liquid silicon using a reducing gas. The reducing of the pressure is performed over a continuous range of interim pressure(s) sufficient to evaporate contaminants from the SiO2-containing material, and removing by vacuum, the one or more evaporated gaseous contaminants.
Abstract:
Systems and methods for controlling a source of physiological affliction within a moving enclosed structure, such as a vehicle, which defines an interior. The system includes: at least one pressure fluctuation generator, at least one pressure sensor located to sense pressure indicative of the interior of the structure; and at least one controller configured to: determine, from the first pressure sensor information, at least one pressure disturbance within the interior of the structure; and control the at least one pressure fluctuation generator to cancel the at least one pressure disturbance within the interior of the structure. In an example, the at least one pressure disturbance includes infrasonic pressure fluctuations (infrasound). In an example, the physiological affliction includes motion sickness or nauseogenicity.
Abstract:
A two-way flow control device including: a housing defining a first opening interface and a second opening interface, a rotor having a plurality of blades, each blade controllable to be angled in a range of positive and negative blade angles to generate respective positive and negative flows between the first opening interface and the second opening interface, first stator vanes mounted to the housing between the blades and the first opening interface, each including a respective stator vane slope having a stator vane angle which are collectively positive or negative angled; second stator vanes mounted to the housing between the blades and the second opening interface, each including a respective stator vane slope having a stator vane angle which are collectively opposite angled to the stator vane angles of the first stator vanes, the second stator vanes mounted to be circumferentially offset with respect to the first stator vanes.
Abstract:
Systems and methods for controlling a source of physiological affliction within a moving enclosed structure, such as a vehicle, which defines an interior. The system includes: at least one pressure fluctuation generator, at least one pressure sensor located to sense pressure indicative of the interior of the structure; and at least one controller configured to: determine, from the first pressure sensor information, at least one pressure disturbance within the interior of the structure; and control the at least one pressure fluctuation generator to cancel the at least one pressure disturbance within the interior of the structure. In an example, the at least one pressure disturbance includes infrasonic pressure fluctuations (infrasound). In an example, the physiological affliction includes motion sickness or nauseogenicity.