摘要:
In computing environments that use virtual addresses (or other indirectly usable addresses) to access memory, the virtual addresses are translated to absolute addresses (or other directly usable addresses) prior to accessing memory. To facilitate memory access, however, address translation is omitted in certain circumstances, including when the data to be accessed is within the same unit of memory as the instruction accessing the data. In this case, the absolute address of the data is derived from the absolute address of the instruction, thus avoiding address translation for the data. Further, in some circumstances, access checking for the data is also omitted.
摘要:
In computing environments that use virtual addresses (or other indirectly usable addresses) to access memory, the virtual addresses are translated to absolute addresses (or other directly usable addresses) prior to accessing memory. To facilitate memory access, however, address translation is omitted in certain circumstances, including when the data to be accessed is within the same unit of memory as the instruction accessing the data. In this case, the absolute address of the data is derived from the absolute address of the instruction, thus avoiding address translation for the data. Further, in some circumstances, access checking for the data is also omitted.
摘要:
In computing environments that use virtual addresses (or other indirectly usable addresses) to access memory, the virtual addresses are translated to absolute addresses (or other directly usable addresses) prior to accessing memory. To facilitate memory access, however, address translation is omitted in certain circumstances, including when the data to be accessed is within the same unit of memory as the instruction accessing the data. In this case, the absolute address of the data is derived from the absolute address of the instruction, thus avoiding address translation for the data. Further, in some circumstances, access checking for the data is also omitted.
摘要:
Native code corresponding to an invalidated trace is re-used in a system emulator. A first trace is identified. A dropped second trace is identified. The dropped second trace is associated with a first native code for emulating the second trace. If the identified first trace corresponds to the dropped second trace, the first native code is associated to the first trace, and the first native code is executed. If the identified first trace does not correspond to the dropped second trace, a second native code for emulating the first trace is created, the second native code is associated with the first trace, and the second native code is executed.
摘要:
Parachute for providing an impedance to a or other rapidly moving person, animal or vehicle comprising a sheet having an edge or edges, peripheral cords tied to the edge or edges and distributed uniformly about the center of the sheet, such sheet being formed with a hole at its center, and a disk near the proximal ends of the cords, the peripheral cords being attached to and passing beyond the disk, the proximal ends of the cords being gathered together and fastened to the torso of a person.
摘要:
In computing environments that use virtual addresses (or other indirectly usable addresses) to access memory, the virtual addresses are translated to absolute addresses (or other directly usable addresses) prior to accessing memory. To facilitate memory access, however, address translation is omitted in certain circumstances, including when the data to be accessed is within the same unit of memory as the instruction accessing the data. In this case, the absolute address of the data is derived from the absolute address of the instruction, thus avoiding address translation for the data. Further, in some circumstances, access checking for the data is also omitted.
摘要:
Native code corresponding to an invalidated trace is re-used in a system emulator. A first trace is identified. A dropped second trace is identified. The dropped second trace is associated with a first native code for emulating the second trace. If the identified first trace corresponds to the dropped second trace, the first native code is associated to the first trace, and the first native code is executed. If the identified first trace does not correspond to the dropped second trace, a second native code for emulating the first trace is created, the second native code is associated with the first trace, and the second native code is executed.