Abstract:
The present invention generally relates to foams and particles made from such foams, for applications such as drug delivery. The foams or particles may comprise a pharmaceutically acceptable polymeric carrier. In some cases, the foams may include colloidal particulates. A first aspect of the present invention is generally related to polymer-based foams or particles containing pharmaceutically active agents. In some cases, the foam or particle may contain smaller colloidal particulates therein. Such colloidal particulates may be used, for example, to limit the amount of material within certain regions of the foam, or exclude pharmaceutically active agents from being located within certain portions of the foam, which may useful for enhancing release of pharmaceutically active agents from the foam. In some cases, the colloidal particulates may cause the foam or particle to have an unexpectedly high specific surface area. The foam, in certain embodiments, can exhibit a relatively high loading of the pharmaceutically active agent. The foam may be microcellular in certain instances. The foam may also be created using a supercritical fluid, for example, supercritical C02. For instance, a precursor to the foam, containing a pharmaceutically active agent, a pharmaceutically acceptable polymeric carrier, and colloidal particulates, can be mixed with a foaming agent. The pressure may then be decreased, thereby causing the foaming agent to expand and causing a foam to form. The foam may also be ground or milled, or otherwise processed, to form particles such as nanoparticles.
Abstract:
Methods and related apparatuses and mixtures are described for detecting hydrogen sulfide in a formation fluid downhole. A detection mixture is combined with the formation fluid downhole. The detection mixture includes metal ions for reacting with hydrogen sulfide forming a metal sulfide, and charged nanoparticles sized so as to inhibit significant aggregation of the metal sulfide so as to enable spectroscopic detection of the metal sulfide downhole. The combined mixture and formation fluid is then spectroscopically interrogated so as to detect the presence of the metal sulfide thereby indicating the presence of hydrogen sulfide in the formation fluid. The mixture also includes chelating ligands for sustaining thermal endurance of the mixture under downhole conditions.
Abstract:
Holographic optical traps using the forces exerted by computer-generated holograms to trap, move and otherwise transform mesoscopically textured materials. The efficacy of the present invention is based upon the quality and nature of the diffractive optical element used to create the traps and dynamically use them. Further a landscape of potential energy sites can be created and used to manipulate, sort and process objects.
Abstract:
Methods and related apparatuses and mixtures are described for detecting hydrogen sulfide in a formation fluid downhole. A detection mixture is combined with the formation fluid downhole. The detection mixture includes metal ions for reacting with hydrogen sulfide forming a metal sulfide, and charged nanoparticles sized so as to inhibit significant aggregation of the metal sulfide so as to enable spectroscopic detection of the metal sulfide downhole. The combined mixture and formation fluid is then spectroscopically interrogated so as to detect the presence of the metal sulfide thereby indicating the presence of hydrogen sulfide in the formation fluid. The mixture also includes chelating ligands for sustaining thermal endurance of the mixture under downhole conditions.
Abstract:
Methods and related apparatuses and mixtures are described for detecting hydrogen sulfide in a formation fluid downhole. A detection mixture is combined with the formation fluid downhole. The detection mixture includes metal ions for reacting with hydrogen sulfide forming a metal sulfide, and charged nanoparticles sized so as to inhibit significant aggregation of the metal sulfide so as to enable spectroscopic detection of the metal sulfide downhole. The combined mixture and formation fluid is then spectroscopically interrogated so as to detect the presence of the metal sulfide thereby indicating the presence of hydrogen sulfide in the formation fluid. The mixture also includes chelating ligands for sustaining thermal endurance of the mixture under downhole conditions.
Abstract:
Holographic optical traps using the forces exerted by computer-generated holograms to trap, move and otherwise transform mesoscopically textured materials. The efficacy of the present invention is based upon the quality and nature of the diffractive optical element used to create the traps and dynamically use them. Further a landscape of potential energy sites can be created and used to manipulate, sort and process objects.
Abstract:
A method and system for correcting aberrations in a beam of light including correcting for effects from an undiffracted portion of an input beam. The method and system includes (1) a component for providing a beam of light; (2) a component for applying a diffraction grating pattern to the beam of light to establish an optical gradient to form an optical trap; (3) component for measuring aberration in the beam of light having the applied diffraction grating pattern; (4) component for calculating a phase-shifting diffraction grating encoding the aberration; and (5) component for projecting the phase-shifting diffraction grating in conjunction with the diffraction grating pattern characteristic of the optical trap. The method and system also includes (1) providing an input beam of light; (2) applying a diffractive grating pattern to the input beam of light to establish a diffracted portion, apart from an undiffracted portion, to form at least one optical trap; (3) operating on both the diffracted portion and the undiffracted portion to bring the light to focus out of the focal plane; and (4) operating on the diffracted portion of the input beam of light (the optical trap) to modify focus of the diffracted portion relative to the undiffracted portion to bring the diffracted portion into focus in the focal plane.
Abstract:
Methods and related apparatuses and mixtures are described for detecting hydrogen sulfide in a formation fluid downhole. A detection mixture is combined with the formation fluid downhole. The detection mixture includes metal ions for reacting with hydrogen sulfide forming a metal sulfide, and charged nanoparticles sized so as to inhibit significant aggregation of the metal sulfide so as to enable spectroscopic detection of the metal sulfide downhole. The combined mixture and formation fluid is then spectroscopically interrogated so as to detect the presence of the metal sulfide thereby indicating the presence of hydrogen sulfide in the formation fluid. The mixture also includes chelating ligands for sustaining thermal endurance of the mixture under downhole conditions.
Abstract:
A system and method for bonding and unbonding of small objects using small adhesive particles. The system and method includes the use of a plurality of optical tweezers to manipulate objects to be bonded and adhesive particles suspended in a fluid. The objects to be bonded (or unbonded) and the adhesive particles are positioned by lower power optical tweezers and then an intense bonding optical tweezer is activated to cause the adhesive to join the objects together (or used to unbond objects).
Abstract:
A system and method for bonding and unbonding of small objects using small adhesive particles. The system and method includes the use of a plurality of optical tweezers to manipulate objects to be bonded and adhesive particles suspended in a fluid. The objects to be bonded (or unbonded) and the adhesive particles are positioned by lower power optical tweezers and then an intense bonding optical tweezer is activated to cause the adhesive to join the objects together (or used to unbond objects).