摘要:
A differential data strobe receiver is provided which is configured to receive a differential data strobe signal at a first strobe input and a second strobe input, wherein transitions of the differential data strobe signal indicate sample points for an associated data signal. The differential data receiver is configured to identify the transitions of the differential strobe signal by differentially comparing values of the differential strobe signal received at the first strobe input and the second strobe input. The differential data strobe receiver comprises strobe gating circuitry configured to generate a strobe gating signal, wherein the associated data signal can only be sampled in dependence on the differential data strobe signal when the strobe gating signal is asserted and strobe input termination circuitry configured selectively to provide a first termination connection for the first strobe input and a second termination connection for the second strobe input. The differential data strobe receiver is configured, prior to receiving the differential data strobe signal in association with the associated data signal, to participate in an initial gate training process to determine a gating delay used to phase align the strobe gating signal with respect to the differential data strobe signal and the strobe input termination circuitry is configured to provide an asymmetric configuration of the first termination connection and the second termination connection during the initial gate training process.
摘要:
A system, method and computer program product are provided for determining routing of data paths in interconnect circuitry for an integrated circuit. The method includes the steps of defining a plurality of cells to be provided along the wide interface of the circuitry, further devices being associated with at least one of the cells, and defining the circuitry as an array of blocks formed in rows and columns, with each cell abutting one of the columns. The method includes the steps of: providing a predetermined set of tiles, each tile providing a predetermined wiring layout, and for each block, applying predetermined rules to determine one of the tiles to be used to implement that block, where the rules take into account the location of the block in the array and any association between the further devices and the cells.
摘要:
An on-chip data processing apparatus has an operating supply voltage selected from a range of supply voltages and has voltage level detection circuitry configured to determine the level of the operating supply voltage. The voltage level detection circuitry comprises adaptive circuitry responsive to a variation in the reference voltage. Phase lock loop circuitry is configured to generate a source clock signal from the operating supply voltage, to receive the voltage level selection signal, to select a target frequency for the source clock signal in dependence on the voltage level selection signal, and to phase lock the source clock signal on the target frequency. Initialization circuitry is configured to initialize the on-chip data processing apparatus for data processing in dependence on the level of said operating supply voltage after the phase lock loop circuitry has phase locked the source clock signal on the target frequency.
摘要:
An on-chip data processing apparatus has an operating supply voltage selected from a range of supply voltages and has voltage level detection circuitry configured to determine the level of the operating supply voltage. The voltage level detection circuitry comprises adaptive circuitry responsive to a variation in the reference voltage. Phase lock loop circuitry is configured to generate a source clock signal from the operating supply voltage, to receive the voltage level selection signal, to select a target frequency for the source clock signal in dependence on the voltage level selection signal, and to phase lock the source clock signal on the target frequency. Initialization circuitry is configured to initialize the on-chip data processing apparatus for data processing in dependence on the level of said operating supply voltage after the phase lock loop circuitry has phase locked the source clock signal on the target frequency.
摘要:
A differential data strobe receiver is provided which is configured to receive a differential data strobe signal at a first strobe input and a second strobe input, wherein transitions of the differential data strobe signal indicate sample points for an associated data signal. The differential data receiver is configured to identify the transitions of the differential strobe signal by differentially comparing values of the differential strobe signal received at the first strobe input and the second strobe input. The differential data strobe receiver comprises strobe gating circuitry configured to generate a strobe gating signal, wherein the associated data signal can only be sampled in dependence on the differential data strobe signal when the strobe gating signal is asserted and strobe input termination circuitry configured selectively to provide a first termination connection for the first strobe input and a second termination connection for the second strobe input. The differential data strobe receiver is configured, prior to receiving the differential data strobe signal in association with the associated data signal, to participate in an initial gate training process to determine a gating delay used to phase align the strobe gating signal with respect to the differential data strobe signal and the strobe input termination circuitry is configured to provide an asymmetric configuration of the first termination connection and the second termination connection during the initial gate training process.
摘要:
A system, method and computer program product are provided for determining routing of data paths in interconnect circuitry for an integrated circuit. The interconnect circuitry on a first side provides a narrow interface for connection to a first device, and on a second side provides a wide interface for connection to a distributed plurality of further devices. Each data path is associated with one of the further devices and provides a connection through the interconnect circuitry between that associated further device and the first device. The method comprises the steps of defining a plurality of cells to be provided along the wide interface, each of the further devices being associated with at least one of the cells, and defining the interconnect circuitry as an array of blocks formed in rows and columns, with each cell abutting one of the columns. Further, the method includes the steps of providing a predetermined set of tiles, each tile providing a predetermined wiring layout, and for each block, applying predetermined rules to determine one of the tiles to be used to implement that block. The predetermined rules take into account the location of the block in the array and the association between the plurality of further devices and the plurality of cells, ensuring that each data path provided by the interconnect circuitry has the same propagation delay. By such an approach, a structured routing method is provided that uses predetermined tiles enabling a layout design for the interconnect circuitry to be readily produced whilst ensuring that the propagation delays are matched for each of the data paths within the interconnect circuitry.