Abstract:
An automotive generator that includes a Lundell rotor. First and second protruding portions are disposed so as to project from inner wall surfaces of portions of first and second yoke portions at root portions of first and second claw-shaped magnetic pole portions, and first and second recess portions are recessed into inner wall surfaces of portions of the first and second yoke portions that face the second and first protruding portions. In addition, a shape of a region in which the field coil is disposed is configured into a wave shape that has a cross-sectional shape in a plane that includes a central axis of the pole core that is approximately constant in a circumferential direction and that zigzags alternately in an axial direction at positions of each of the first and second claw-shaped magnetic pole portions.
Abstract:
An electric rotating machine comprises: a stator in which a coil is wound on a plurality of teeth in concentrated winding, and the coil is connected to a three-phase power supply; and a rotor disposed in opposition to the teeth of the stator; wherein a ratio between the number of poles and the number of slots of the stator is 1:3. There is no higher harmonics of magnetomotive force in low order close to fundamental wave, thus enabling efficient operation of the electric rotating machine. Furthermore, owing to the stator of concentrated winding, it is possible to provide an electric rotating machine of high productivity with small coil end, high mass production, and high space factor.
Abstract:
In a linear motor according to this invention, the field permanent magnets 2 are arranged at an equal pitch around a field iron core 1 so that the poles are alternately changed. Also, an armature 3a on the needle side is arranged oppositely via a magnetic gap on a magnetic pole face of the field permanent magnets 2. The armature 3a consists of an armature core forming the teeth and a yoke portion by punching an electromagnetic steel plate like the comb teeth, coil being wound around a plurality of teeth 4u, 4v and 4w for this armature core to form the armature windings 5u, 5v and 5w. The teeth 6a without coil winding is disposed between teeth with coil winding 4u and 4v and between teeth with coil winding 4v and 4w. The teeth 4u, 4v and 4w with coil winding and the teeth 6a without coil winding are alternately arranged.
Abstract:
An electric rotating machine comprises: a stator in which a coil is wound on a plurality of teeth in concentrated winding, and the coil is connected to a three-phase power supply; and a rotor disposed in opposition to the teeth of the stator; wherein a ratio between the number of poles and the number of slots of the stator is 1:3. There is no higher harmonics of magnetomotive force in low order close to fundamental wave, thus enabling efficient operation of the electric rotating machine. Furthermore, owing to the stator of concentrated winding, it is possible to provide an electric rotating machine of high productivity with small coil end, high mass production, and high space factor.
Abstract:
The electric rotating machine includes a fixed stator fixed to the inner circumferential side of a housing, a moving stator rotatably supported on the inner circumferential side of the housing, a rotor disposed concentrically on the inner circumferential side of the fixed stator and the moving stator, and a moving stator drive formed of a gear and a motor for rotating the moving stator by a predetermined angle. The moving stator drive is detachable with respect to the housing. Coil leader lines are stored in an internal part of the housing so that the moving stator is capable of rotating by a predetermined angle.
Abstract:
A control apparatus is for controlling an AC rotary machine which includes a first and second stator elements and a rotor, in which the first stator element can be turned, or offset, in a circumferential direction relative to the second stator element. The control apparatus includes an actuator for adjusting a voltage induced in a stator coil due to rotation of the rotor by driving the first stator element, a magnetic flux command calculator for calculating a desired magnetic flux amplitude command based on rotating speed of the AC rotary machine, a magnetic flux estimator for estimating magnetic flux amplitude of the AC rotary machine, a speed command calculator for calculating an actuator speed command to be given to the actuator so that the estimated magnetic flux amplitude follows the magnetic flux amplitude command, and an actuator controller for controlling the actuator according to the actuator speed command.
Abstract:
An automotive generator that includes a Lundell rotor. First and second protruding portions are disposed so as to project from inner wall surfaces of portions of first and second yoke portions at root portions of first and second claw-shaped magnetic pole portions, and first and second recess portions are recessed into inner wall surfaces of portions of the first and second yoke portions that face the second and first protruding portions. In addition, a shape of a region in which the field coil is disposed is configured into a wave shape that has a cross-sectional shape in a plane that includes a central axis of the pole core that is approximately constant in a circumferential direction and that zigzags alternately in an axial direction at positions of each of the first and second claw-shaped magnetic pole portions.
Abstract:
In a rotating electric machine including a field pole unit having ten magnetic poles (P=10) and an armature having twelve teeth (Q=12), armature coils are wound around the successive teeth with phase relationships and winding polarities arranged in the order of U+/U+, U−/V+, V−/V−, W−/V+, W+/W+, W−/U+, U−/U−, U+/V−, V+/V+, W+/V−, W−/W− and W+/U−, where “U,” “V” and “W” represent three phases of the individual armature coils while “+” and “−” denote winding polarities. Among all harmonic components of magnetomotive forces produced by the armature coils, harmonic components of orders lower than a synchronized component can be reduced in this rotating electric machine. This structure decreases eddy currents flowing in the field pole unit, resulting lower eddy current loss in the field pole unit of the rotating electric machine.
Abstract translation:在包括具有十个磁极(P = 10)和具有十二个齿(Q = 12)的电枢的场极单元的旋转电机中,电枢线圈围绕连续的齿缠绕,相位关系和绕组极性按照 U + / U +,U- / V +,V- / V-,W- / V +,W + / W +,W- / U +,U- / U-,U + / V-,V + / V +,W + / V-,W - / W-和W + / U-,其中“U”,“V”和“W”表示各个电枢线圈的三相,而“+”和“ - ”表示绕组极性。 在电枢线圈产生的磁动势的所有谐波分量中,在这种旋转电机中可以减少低于同步分量的谐波分量。 该结构减小了在场极单元中流动的涡流,从而在旋转电机的场极单元中产生较低的涡流损耗。
Abstract:
A control apparatus is for controlling an AC rotary machine which includes a first and second stator elements and a rotor, in which the first stator element can be turned, or offset, in a circumferential direction relative to the second stator element. The control apparatus includes an actuator for adjusting a voltage induced in a stator coil due to rotation of the rotor by driving the first stator element, a magnetic flux command calculator for calculating a desired magnetic flux amplitude command based on rotating speed of the AC rotary machine, a magnetic flux estimator for estimating magnetic flux amplitude of the AC rotary machine, a speed command calculator for calculating an actuator speed command to be given to the actuator so that the estimated magnetic flux amplitude follows the magnetic flux amplitude command, and an actuator controller for controlling the actuator according to the actuator speed command.
Abstract:
In a rotating electric machine including a field pole unit having ten magnetic poles (P=10) and an armature having twelve teeth (Q=12), armature coils are wound around the successive teeth with phase relationships and winding polarities arranged in the order of U+/U+, U−/V+, V−/V−, W−/V+, W+/W+, W−/U+, U−/U−, U+/V−, V+/V+, W+/V−, W−/W− and W+/U−, where “U,” “V” and “W” represent three phases of the individual armature coils while “+” and “−” denote winding polarities. Among all harmonic components of magnetomotive forces produced by the armature coils, harmonic components of orders lower than a synchronized component can be reduced in this rotating electric machine. This structure decreases eddy currents flowing in the field pole unit, resulting lower eddy current loss in the field pole unit of the rotating electric machine.
Abstract translation:在包括具有十个磁极(P = 10)和具有十二个齿(Q = 12)的电枢的场极单元的旋转电机中,电枢线圈围绕连续的齿缠绕,相位关系和绕组极性按照 U + / U +,U- / V +,V- / V-,W- / V +,W + / W +,W- / U +,U- / U-,U + / V-,V + / V +,W + / V-,W - / W-和W + / U-,其中“U”,“V”和“W”表示各个电枢线圈的三相,而“+”和“ - ”表示绕组极性。 在电枢线圈产生的磁动势的所有谐波分量中,在这种旋转电机中可以减少低于同步分量的谐波分量。 该结构减小了在场极单元中流动的涡流,从而在旋转电机的场极单元中产生较低的涡流损耗。