Abstract:
The present invention relates to a system and method for routing a data from one or more mobile communication channel to one or more fixed communication channel in a resource efficient manner. The delinking router of the system communicates with the one or more mobile communication channel and with one or more fixed communication channel and transmits the request to a Base Transmitting Station (BTS) for routing the data from the mobile communication channel to the fixed communication channel. The delinking router also reduces energy and spectrum consumption of the mobile communication channel by turning off its radio frequency module after routing its data to the fixed communication channel.
Abstract:
A method and apparatus for configuring a mobile device capable of supporting multiple number assignment modules, the method writing a first configuration parameter to indicate whether the mobile device should support multiple number assignment modules; specifying a second configuration parameter to indicate whether the mobile device should support data connectivity on a second or subsequent number assignment module; and setting a third configuration parameter to indicate whether separate billing should occur for data usage on the multiple number assignment modules. Also, a method and apparatus for data connectivity on a mobile device supporting multiple name assignment modules, the method checking, subsequent to transitioning to a second name assignment module, whether the second name assignment module supports data connectivity; responsive to the checking, determining whether separate billing is required for the second name assignment module; and responsive to the determining, establishing a data connection.
Abstract:
Data is received by a first device from a first source, where the data contains a link to a particular web page. Responsive to the data, a repository of syndicated content items associated with web pages is accessed. If a particular syndicated content item associated with the particular web page is in the repository, the particular syndicated content item is retrieved and provided to a second device for display at the second device.
Abstract:
Content is managed and delivered to mobile devices, often through a wireless network. Mobile devices have content management software containing instructions to receive and manage content at the mobile device. Content management servers select and manage content and transmit content to the mobile devices, receiving requests for content, and up-to-date information regarding quantity of content to be transmitted. Up-to-date information regarding quantity is repeatedly sent and received, and content is repeatedly selected and transmitted using the information to make selections. Specific embodiments provide methods, systems, and devices for automatically managing content to increase the probability that the user is gaining access to the content they want to see and for decreasing the chance that the delivery of content is tying up limited resources of mobile devices.
Abstract:
In a push-to-talk device having two processors where one of the processors is a radio chip and one of the processors is a microprocessor, a method and apparatus for synchronizing the microprocessor and the radio chip includes the steps of checking the status of a radio push-to-talk key on the radio chip when a user push-to-talk button is turned on or off on the microprocessor; if the user push-to-talk button is on and the radio push-to-talk key is off, performing the steps of sending a command to the radio chip to turn on the radio push-to-talk key; and waiting for a response from the radio chip, and if the response indicates the radio push-to-talk key is on, remaining in this synchronized state, otherwise repeating the sending and waiting steps; if the user button is off and the radio push-to-talk key is on, performing the steps of: sending a command to the radio chip to turn off the radio push-to-talk key; and waiting for a response from the radio chip, and if the response indicates the radio push-to-talk key is off, remaining in this synchronized state, otherwise repeating the sending and waiting steps; if the user push-to-talk button is off and the radio push-to-talk key is off, remaining in this synchronized state; and if the user push-to-talk button is on and the radio push-to-talk key is on, remaining in this synchronized state.
Abstract:
A method, system, and user device are provided for provisioned talkgroup identifier discovery in a dispatch or similar network, in which a user is provided with a list of talkgroups provisioned for the user device. In some embodiments a new request message sent from the user device is implemented to effect a response from the network providing the information. In other embodiments the provision of the information is provided by a new message automatically sent from the network to the user device at a specific time. In yet other embodiments, the user device attempts to join every group to test which groups are provisioned for it.
Abstract:
In a push-to-talk device having two processors where one of the processors is a radio chip and one of the processors is a microprocessor, a method and apparatus for synchronizing the microprocessor and the radio chip includes the steps of checking the status of a radio push-to-talk key on the radio chip when a user push-to-talk button is turned on or off on the microprocessor; if the user push-to-talk button is on and the radio push-to-talk key is off, performing the steps of sending a command to the radio chip to turn on the radio push-to-talk key; and waiting for a response from the radio chip, and if the response indicates the radio push-to-talk key is on, remaining in this synchronized state, otherwise repeating the sending and waiting steps; if the user button is off and the radio push-to-talk key is on, performing the steps of sending a command to the radio chip to turn off the radio push-to-talk key; and waiting for a response from the radio chip, and if the response indicates the radio push-to-talk key is off, remaining in this synchronized state, otherwise repeating the sending and waiting steps; if the user push-to-talk button is off and the radio push-to-talk key is off, remaining in this synchronized state; and if the user push-to-talk button is on and the radio push-to-talk key is on, remaining in this synchronized state.
Abstract:
Disclosed herein is a system for generating energy, comprising a first heat exchanger in communication with a first heat source; wherein the first heat exchanger contacts a transfer fluid that comprises a working fluid and an associating composition; and a first energy conversion device comprising a piston in reciprocatory communication with a cylinder; the cylinder comprising an inlet or an outlet valve in operative communication with a cam having multiple lobes; the cam permitting the expansion or compression of the working fluid in the cylinder two or more times in a single cycle.
Abstract:
A system for enhancing functionality of a mobile device comprising: the mobile device, wherein the mobile device includes: a radio subsystem; a processor adapted to interact with the radio subsystem; a user interface; a short range communications system; and a battery adapted to power the mobile device; and an accessory adapted to communicate with the mobile device, the accessory including: at least one processor; a radio subsystem communicating with the processor; and a short range communications system adapted to communicate with the short range communications system of the mobile device, wherein the radio subsystem of the mobile device differs from the radio subsystem of the accessory.
Abstract:
In a push-to-talk device having two processors where one of said processors is a radio chip and one of said processors is a microprocessor, a method and apparatus for synchronizing said microprocessor and said radio chip comprising the steps of: checking the status of a radio push-to-talk key on said radio chip when a user push-to-talk button is turned on or off on said microprocessor; if said user push-to-talk button is on and said radio push-to-talk key is off, performing the steps of: sending a command to said radio chip to turn on said radio push-to-talk key; and waiting for a response from said radio chip, and if said response indicates said radio push-to-talk key is on, remaining in this synchronized state, otherwise repeating said sending and waiting steps; if said user button is off and said radio push-to-talk key is on, performing the steps of: sending a command to said radio chip to turn off said radio push-to-talk key; and waiting for a response from said radio chip, and if said response indicates said radio push-to-talk key is off, remaining in this synchronized state, otherwise repeating said sending and waiting steps; if said user push-to-talk button is off and said radio push-to-talk key is off, remaining in this synchronized state; and if said user push-to-talk button is on and said radio push-to-talk key is on, remaining in this synchronized state.