摘要:
A driving apparatus, a driving method and a liquid crystal display (LCD) using the same are provided, wherein the method includes the following steps of: setting a color display sequence, wherein the color display sequence is RGBG, RGRB or RBGB; alternately reading frame data from a first frame register and a second register according to a frame period having three field periods; and sequentially displaying four color data in a cycle period having four field periods according to the color display sequence and the read frame data. By utilizing the method in the present invention, color loss of a field sequential color display occurred in a lower temperature environment is improved.
摘要:
A driving electrode structure of a plasma display panel is described. The driving electrode structure has a driving electrode located in one luminant cell of each pixel. The driving electrode is formed on a transparent electrode and separated by a distance from the side of the transparent electrode adjacent to the edge of the luminant cells. The driving electrode has two branches coupled to a main electrode or a side electrode at the side of the transparent electrode adjacent to the edge of luminant cells. The driving electrode approximates the discharge center of the luminant cell to improve the driving characteristic.
摘要:
A dynamic color temperature and color deviation calibration method is provided for eliminating problems associated with color temperature change and color deviation caused by an emissivity change of red, green and blue phosphor layers of a plasma display panel (PDP). The method comprises the steps of utilizing laws of color matching for calculating an emissivity change of a pixel of the PDP in response to a brightness change of one of red, green, and blue lights emitted by a corresponding one of red, green and blue discharge cells of the PDP through a numeric operation; dynamically adjusting brightness of one of the emitted red, green, and blue lights by increasing or decreasing strength of input video signal of each of the discharge cells; and eliminating a color temperature and a color deviation of the PDP due to an emissivity change. This can render an image having an optimum color purity and color temperature by eliminating adverse effects on PDP due to emissivity change.
摘要:
A driving apparatus, a driving method and a liquid crystal display (LCD) using the same are provided, wherein the method includes the following steps of: setting a color display sequence, wherein the color display sequence is RGBG, RGRB or RBGB; alternately reading frame data from a first frame register and a second register according to a frame period having three field periods; and sequentially displaying four color data in a cycle period having four field periods according to the color display sequence and the read frame data. By utilizing the method in the present invention, color loss of a field sequential color display occurred in a lower temperature environment is improved.
摘要:
A color sequential liquid crystal display (color-sequential-LCD) and an LCD panel driving method thereof are disclosed. By changing the arrangement of the pixel array in the LCD panel and turning on several rows of pixels in the LCD panel at the same time, so that the color sequential LCD of the present invention not only respectively reduces the scanning time of red, green and blue video data to make the liquid crystal molecules of all the pixels on the LCD panel have enough response time but also respectively increases the lighting-up time of the red, green and blue light emitting diodes of the back light module to promote the display brightness of the entire LCD panel. Therefore, the color sequential LCD of the present invention displays a single color or a full color image without the bottom color mixing phenomenon, and furthermore, the display brightness thereof can be promoted.
摘要:
A method and an apparatus for improving the gray-scale linearity of a plasma display. At least two types of gray-scale allocations are mixed for forming the original gray scale, or different gray scales are mixed to derive the original gray scale, so as to obtain the required brightness. Therefore, by using multiple combinations to adjust the original gray scale, the required brightness is obtained, and the gray scale linearity for all the gray scales is improved.
摘要:
An electrode structure with white balance adjustment for plasma display panel is described. The electrode structure has a comb electrode, a first transparent electrode and a second transparent electrode. The first transparent electrode and the second transparent electrode are separated from the comb electrode, respectively. Changing the profile of the first transparent electrode and the second transparent electrode increases the flexibility of the transparent electrodes. Further, the width of the first electrodes responsive to the luminous regions is adjusted to control the luminance through the first transparent electrode so that white balance of the plasma display panel is precisely corrected.
摘要:
A compensation process for improving color saturation and image quality of a plasma display panel (PDP) is provided, wherein a brightness of light generated from each of red, green, and blue discharge cells of each pixel on said PDP is calculated through a numeric operation according to laws of color matching. The process comprises the step of increasing or decreasing the strength of input image signals of each of the red, green, and blue discharge cells in accordance with the calculation result for adjusting brightness of the generated red, green, and blue lights so as to subtract a visible light generated by gas in each of the red, green, and blue discharge cells during gas discharging, thereby eliminating an adverse effect of the visible light on color purity and color temperature of the PDP during gas discharging. This can obtain an image on PDP having an optimum color purity and color temperature and reduce the manufacturing cost.
摘要:
A front panel for AC plasma display panel made by: using exposure and sand blast techniques to form horizontally spaced lines of induction layer above an inner side of a glass substrate, and then making X-electrodes and Y-electrodes on the glass substrate, enabling X-electrodes and Y-electrodes to be alternatively disposed and horizontally spaced between each two adjacent lines of induction layer, and then printing a protective layer over the electrodes, enabling a straight line of discharge path to be formed between each X-electrode and Y-electrode, so that the service life of the plasma display panel can be prolonged, the intensity of electric field and UV light can be greatly improved, and the value of driving voltage can be effectively reduced.
摘要:
A driving electrode structure of a plasma display panel is described. The driving electrode structure has a driving electrode located in one luminant cell of each pixel. The driving electrode is formed on a transparent electrode and separated by a distance from the side of the transparent electrode adjacent to the edge of the luminant cells. The driving electrode has two branches coupled to a main electrode or a side electrode at the side of the transparent electrode adjacent to the edge of luminant cells. The driving electrode approximates the discharge center of the luminant cell to improve the driving characteristic.