摘要:
A gain-determining method for grayscale white balance of a display apparatus comprising a panel is provided. The method first displays a white, a red, a green, and a blue images on the panel respectively and measures the chromatic values and luminance of the images. Next, the chromatic values and luminance of a target white image is inputted. Following, according to the measured chromatic values and luminance of the white, the red, the green and the blue images, a first set of color mixture ratios is calculated. Then, according to the chromatic values and luminance of the target white image and the chromatic values and luminance of the red, the green and the blue images, a second set of color mixture ratios is calculated. Finally, according to the first set and the second set of color mixture ratios, a red gain, a green gain and a blue gain are calculated.
摘要:
A method for automatically detecting and adjusting grayscale/white balance of a display comprises the steps of: detecting a chromaticity coordinate and a brightness of a present white color of the display by a detector; selecting a chromaticity coordinate of three primary colors of red, green, and blue in a known chromaticity space for automatically calculating a present mixing ratio of the three primary colors of red, green, and blue of the present white color of the display according to Grassman's Law of color mixture in colormetry; calculating a desired mixing ratio of three primary colors of red, green, and blue of an ideal white color under a predetermined color temperature; and comparing the present mixing ratio with the desired mixing ratio to obtain a proportion therebetween which is used as a set of gain values of the three primary colors of red, green of the display.
摘要:
A method for correcting the white balance of a display by: setting a target color coordinates of a target white point of a target white point plane at a predetermined color temperature and a group of gray levels as the input gray levels in response to a user input command; constructing a white color image according to the group of the gray levels; measuring luminance and color coordinates of a measured white point of the white color image; estimating luminance of the R, G, B based on the standard color coordinates defined in a standard color space, the measured luminance and color coordinates of the measured white point; estimating gray levels of the R, G, B based on the estimated luminance of the R, G, B; and reconstructing the Gamma table based on the estimated adjusted gray levels of the two adjustable colors.
摘要:
A method for correcting the white balance of a display by: setting a target color coordinates of a target white point at a predetermined color temperature and a group of gray levels in response to an user input command; constructing R, G, B images according to the group gray levels; measuring the luminance and corresponding color coordinates of the R, G, B based on the R, G, B images; selecting one color of R, G, B to be a base color and the other two colors to be adjustable colors; fixing the measured luminance of the base color; estimating target luminance of the two adjustable color based on the measured luminance of the base color; estimating the adjusted gray levels of the two adjustable colors based on estimated luminance of the adjustable colors and the Gamma table; and reconstructing the Gamma table based on the estimated adjusted gray levels of the two adjustable colors.
摘要:
A method for adjusting an image on the basis of characteristics of a display system is provided. The image includes M horizontal lines. Each of the M horizontal lines respectively includes N pixels. Each pixel has an original gray level. A look-up table previously stores a plurality of conversion coefficients related to the characteristics of the display system. The method first calculates an ith loading according to the N original gray levels of the N pixels in the ith horizontal line. Based on the ith loading, an ith conversion coefficient corresponding to the ith loading is selected from the plurality of conversion coefficients in the look-up table. The method respectively multiplies the N original gray levels of the N pixels in the ith horizontal line by the ith conversion coefficient to generate N new gray levels for the N pixels in the ith horizontal line, whereby the image is adjusted.
摘要:
The present invention provides a PDP structure including a first substrate, a second substrate and a Waffle barrier rib structure located between the first and second substrate. The Waffle barrier rib structure includes three first barrier ribs having different width and a plurality of second barrier ribs perpendicular to the first barrier ribs. The second barrier ribs are located between the two first barrier ribs, and connect the wider structure of the two first barrier ribs. Therefore, discharge spaces are formed. Because of different width, the height difference of the barrier rib structure is formed after thermal process. Hence, gas can pass through the barrier ribs structure between the front and the back substrate sealed together.
摘要:
A method for adjusting a target gray level of a target pixel based on a spatial mask is provided. The target pixel is surrounded with N adjacent pixels; each of the N adjacent pixels respectively has an adjacent gray level. The method first multiplies the target gray level with a sharpness index to generate an amplified target gray level and respectively multiplies each of the adjacent gray level with an adjacent index to generate N modified adjacent gray levels. Then, the amplified target gray level and the N modified adjacent gray levels are added up to generate a first gray level sum. The method multiplies the first gray level sum with a multiplying parameter to generate a second gray level sum. At last, the method divides the second gray level sum by a dividing parameter to generate an adjusted gray level for the target pixel.
摘要:
The present invention is to provide a method of driving an opposed discharge PDP comprising causing a driving circuit of the PDP to apply a sustaining pulse to each of a plurality of sustaining electrodes thereof for showing each of a plurality of sub-fields wherein a phase of the sustaining pulse of any of the sustaining electrodes is 180 degrees different from that of the sustaining pulse of the adjacent sustaining electrode, i.e. a waveform of odd number pixels is 180 degrees different from that of even number pixels in a sustaining period, enabling two adjacent discharge cells discharge in opposite directions so as to eliminate noise caused by vibration of the PDP in discharge, lower peak current and greatly decrease load on sustaining circuit and resulting in prolonging useful life of the circuit and increasing reliability of the circuit.
摘要:
This invention provides a dynamic image adjusting apparatus for dynamically adjusting the contrast of a first image signal which includes a plurality of pixels. The adjusting apparatus includes a first transformation module, an operation module, and a second transformation module. The first transformation module receives the first image signal for generating a plurality of adjusting signals, wherein each pixel of the first image signal corresponds to one of the plurality of adjusting signals. The oepration module is coupled to the first transformation module and receives a first set of adjusting signals of the plurality of adjusting signals to generate a first gain curve. The second transformation module is coupled to the operation module and the first transformation module, and generates a second image signal according to the first gain curve and the plurality of adjusting signals.
摘要:
A front panel structure of Plasma Display Panel (PDP) is disclosed sequentially comprising a first electrode, a second electrode and a third electrode, wherein the second electrode has transparent electrodes located on both top and bottom sides of a bus electrode. A first discharge center is formed between a transparent electrode of the first electrode and one transparent electrode of the second electrode. A second discharge center is formed between the other transparent electrode of the second electrode and a transparent electrode of the third electrode. Therefore, an emitting cell of PDP has two discharge centers. To make the discharge more stable, we choose the first electrode and the third electrode to become the scan electrodes, or to form a thicker dielectric layer or discharge deactivation film below the second bus electrode as a scan electrode.