Abstract:
A phase shifter includes: a feed layer; a stripline feeding network as strip conductor fixed to a circuit layout surface, the stripline feeding network having a phase shifting unit, including two fixed transmission line sections, and a trimmer with stripline conductor, including an acting surface facially opposite to the phase shifting unit, the stripline conductor is located in the acting surface in strip shape, and the stripline conductor and the two fixed transmission line sections of phase shifting unit are in electrical transport relationship, the electrical transmission length between line sections can be adjusted by the shift of stripline conductor to implement phase shift function; an interlocking bar, in displacement actuation state located at the gap on the circuit layout surface of feed layer, the interlocking bar drives the trimmer to shift; a metal layer, located in the corresponding position of at least a back side of feed layer.
Abstract:
Methods and devices for producing cavitation in tissue are provided. In one embodiment, a low-frequency ultrasound pulse is transmitted into tissue, a high-frequency ultrasound pulse is transmitted into tissue, and a composite waveform is formed in the tissue that has a peak negative pressure value that exceeds an intrinsic threshold for cavitation in the tissue. In some embodiments, the peak negative pressures of the individual ultrasound pulses do not exceed the intrinsic threshold for cavitation. In another embodiment, a plurality of ultrasound pulses at various resonant frequencies are transmitted into tissue, and the time delays between these transmissions are adjusted to allow the ultrasound pulses to align temporally and form a monopolar pulse having a compound peak negative pressure that exceeds an intrinsic threshold for cavitation in the tissue. Systems for performing Histotripsy therapy are also discussed.
Abstract:
A lens system includes a first lens and a second lens in order from the object side thereof. The first lens includes a first optical portion and a first mounting portion surrounding the first optical portion. The second lens includes a second optical portion with a convex object side surface, and a second mounting portion surrounding the second optical portion. The convex object side surface includes an optical surface at the center thereof and a first connecting surface surrounding the optical surface. The second mounting portion includes a second connecting surface surrounding the first connecting surface. Wherein the angle measured anti-clockwise from the first connecting surface to the axis of the lens system satisfies a certain condition.
Abstract:
A lens includes an optical portion and a mounting portion. The optical portion refracts a first portion of light from an object incident on the optical portion to form an image of the object. The mounting portion surrounds the optical portion. The mounting portion includes at least one light dispersing surface dispersing a second portion of light from the object light incident thereon. A lens module and camera module utilizing the lens are further disclosed.
Abstract:
A stereo projection optical system includes a polarizing beam splitter, a 2-way wheel, a digital micro-mirror device, and a total internal reflection prism. The polarizing beam splitter is configured for emitting two light outputs. The 2-way wheel includes a reflective region and a transmissive region. The reflective region is configured for reflecting the light outputs and the transmissive region is configured for transmitting the light outputs. The digital micro-mirror device is configured for superimposing spatial information on the light outputs. The total internal reflection prism configured for coupling the light outputs of the 2-way wheel into the digital micro-mirror device and transmitting a light output of the digital micro-mirror device. The stereo projection optical systems provide viewers three-dimensional images formed by two alternative polarized light beams whose polarizations are perpendicular to each other utilizing the 2-way wheel.
Abstract:
A prism monomer for use in a digital light processing projection device includes a plastic triangular prism having a hypotenuse surface and a glass sheet. The glass sheet has two opposite surfaces. One surface of the glass sheet is attached to the hypotenuse surface of the plastic triangular prism and the other surface of the glass sheet is formed with an anti-reflective coating.
Abstract:
A testing system measures central angles of filter segments of a color wheel. The color wheel includes a color filter, which includes three sector-shaped filter segments and a motor for driving the filter segments to rotate. The testing system includes a sensor and a processor. The sensor emits light toward the color filter and receives light reflected back by the color filter, and generates an impulse signal according to intensity changes of the light reflected back by the color filter. The impulse signal includes a plurality of boundary impulses corresponding to boundaries formed between adjacent filter segments. The processor calculates central angles of the filter segments according to relationships between the boundary impulses.
Abstract:
A panoramic imaging system includes a panoramic imaging lens, a relay lens, an imaging device, and a display device. The panoramic imaging lens includes an annular incident surface and a bottom surface adjacent to the annular incident surface. The bottom surface includes an annular reflective portion substantially opposite to the annular incident surface. An image light incident through the annular incident surface can be total reflected by the annular reflective portion.
Abstract:
A stereo projection optical system includes a polarizing beam splitter, a 2-way wheel, a digital micro-mirror device, and a total internal reflection prism. The polarizing beam splitter is configured for emitting two light outputs. The 2-way wheel includes a reflective region and a transmissive region. The reflective region is configured for reflecting the light outputs and the transmissive region is configured for transmitting the light outputs. The digital micro-mirror device is configured for superimposing spatial information on the light outputs. The total internal reflection prism configured for coupling the light outputs of the 2-way wheel into the digital micro-mirror device and transmitting a light output of the digital micro-mirror device. The stereo projection optical systems provide viewers three-dimensional images formed by two alternative polarized light beams whose polarizations are perpendicular to each other utilizing the 2-way wheel.
Abstract:
A lens module includes a lens barrel and a lens and an opaque adhesive layer. The lens includes a central imaging portion and a peripheral non-imaging portion. The lens is received in the lens barrel with the peripheral non-imaging portion contacting the lens barrel. The opaque adhesive layer is applied to a contact portion between the lens barrel and the lens to fixedly secure the lens to the lens barrel and configured for blocking light from entering through the peripheral non-imaging portion.