Abstract:
Techniques and tools for encoding and decoding motion vector information for video images are described. For example, a video encoder yields an extended motion vector code by jointly coding, for a set of pixels, a switch code, motion vector information, and a terminal symbol indicating whether subsequent data is encoded for the set of pixels. In another aspect, an encoder/decoder selects motion vector predictors for macroblocks. In another aspect, a video encoder/decoder uses hybrid motion vector prediction. In another aspect, a video encoder/decoder signals a motion vector mode for a predicted image. In another aspect, a video decoder decodes a set of pixels by receiving an extended motion vector code, which reflects joint encoding of motion information together with intra/inter-coding information and a terminal symbol. The decoder determines whether subsequent data exists for the set of pixels based on e.g., the terminal symbol.
Abstract:
Techniques and tools for encoding and decoding motion vector information for video images are described. For example, a video encoder yields an extended motion vector code by jointly coding, for a set of pixels, a switch code, motion vector information, and a terminal symbol indicating whether subsequent data is encoded for the set of pixels. In another aspect, an encoder/decoder selects motion vector predictors for macroblocks. In another aspect, a video encoder/decoder uses hybrid motion vector prediction. In another aspect, a video encoder/decoder signals a motion vector mode for a predicted image. In another aspect, a video decoder decodes a set of pixels by receiving an extended motion vector code, which reflects joint encoding of motion information together with intra/inter-coding information and a terminal symbol. The decoder determines whether subsequent data exists for the set of pixels based on e.g., the terminal symbol.
Abstract:
A search engine for documents containing text may process text using a statistical language model, classify the text based on entropy, and create suffix trees or other mappings of the text for each classification. From the suffix trees or mappings, a graph may be constructed with relationship strengths between different words or text strings. The graph may be used to determine search results, and may be browsed or navigated before viewing search results. As new documents are added, they may be processed and added to the suffix trees, then the graph may be created on demand in response to a search request. The graph may be represented as a adjacency matrix, and a transitive closure algorithm may process the adjacency matrix as a background process.
Abstract:
Indexing methods are described that may be used by databases, search engines, query and retrieval systems, context sensitive data mining, context mapping, language identification, image recognition, and robotic systems. Raw baseline features from an input signal are aggregated, abstracted and indexed for later retrieval or manipulation. The feature index is the quantization number for the underlying features that are represented by an abstraction. Trajectories are used to signify how the features evolve over time. Features indexes are linked in an ordered sequence indicative of time quanta, where the sequence represents the underlying input signal. An example indexing system based on the described processes is an inverted index that creates a mapping from features or atoms to the underlying documents, files, or data. A highly optimized set of operations can be used to manipulate the quantized feature indexes, where the operations can be fine tuned independent from the base feature set.
Abstract:
Embodiments for implementing a speech recognition system that includes a speech classifier ensemble are disclosed. In accordance with one embodiment, the speech recognition system includes a classifier ensemble to convert feature vectors that represent a speech vector into log probability sets. The classifier ensemble includes a plurality of classifiers. The speech recognition system includes a decoder ensemble to transform the log probability sets into output symbol sequences. The speech recognition system further includes a query component to retrieve one or more speech utterances from a speech database using the output symbol sequences.
Abstract:
A clustering tool to generate word clusters. In embodiments described, the clustering tool includes a clustering component that generates word clusters for words or word combinations in input data. In illustrated embodiments, the word clusters are used to modify or update a grammar for a closed vocabulary speech recognition application.
Abstract:
In one embodiment, datasets are stored in a catalog. The datasets are enriched by establishing relationships among the domains in different datasets. A user searches for relevant datasets by providing examples of the domains of interest. The system identifies datasets corresponding to the user-provided examples. The system them identifies connected subsets of the datasets that are directly linked or indirectly linked through other domains. The user provides known relationship examples to filter the connected subsets and to identify the connected subsets that are most relevant to the user's query. The selected connected subsets may be further analyzed by business intelligence/analytics to create pivot tables or to process the data.
Abstract:
The present invention extends to methods, systems, and computer program products for identifying key phrases within documents. Embodiments of the invention include using a tag index to determine what a document primarily relates to. For example, an integrated data flow and extract-transform-load pipeline, crawls, parses and word breaks large corpuses of documents in database tables. Documents can be broken into tuples. The tuples can be sent to a heuristically based algorithm that uses statistical language models and weight+cross-entropy threshold functions to summarize the document into its “top N” most statistically significant phrases. Accordingly, embodiments of the invention scale efficiently (e.g., linearly) and (potentially large numbers of) documents can be characterized by salient and relevant key phrases (tags).
Abstract:
Repetition of content words in a communication is used to increase the certainty, or, alternatively, reduce the uncertainty, that the content words were actual words from the communication. Reducing the uncertainty of a particular content word of a communication in turn increases the likelihood that the content word is relevant to the communication. Reliable, relevant content words mined from a communication can be used for, e.g., automatic internet searches for documents and/or web sites pertinent to the communication. Reliable, relevant content words mined from a communication can also, or alternatively, be used to automatically generate one or more documents from the communication, e.g., communication summaries, communication outlines, etc.
Abstract:
An indexing system uses a graph-like data structure that clusters features indexes together. The minimum atomic value in the data structure is represented as a leaf node which is either a single feature index or a sequence of two or more feature indexes when a minimum sequence length is imposed. Root nodes are formed as clustered collections of leaf nodes and/or other root nodes. Context nodes are formed from root nodes that are associated with content that is being indexed. Links between a root node and other nodes each include a sequence order value that is used to maintain the sequencing order for feature indexes relative to the root node. The collection of nodes forms a graph-like data structure, where each context node is indexed according to the sequenced pattern of feature indexes. Clusters can be split, merged, and promoted to increase the efficiency in searching the data structure.