摘要:
To ensure irradiation accuracy and safety, even when an irradiation device employing a different irradiation method is used, disclosed is herein a charged particle beam irradiation apparatus that irradiates an irradiation target with charged particle beams includes: a charged particle beam generator for generating the charged particle beams; a passive scattering irradiation device and a scanning irradiation device, both for irradiating the irradiation target with the charged particle beams; a beam transport system for transporting the charged particles beam extracted from the charged particle beam generator, to selected one of the two irradiation devices; and a central controller that modifies operating parameters on the charged particle beam generator, according to the irradiation method adopted for the selected irradiation device.
摘要:
The present invention improves the accuracy of therapy by checking in real time whether an spread-out Bragg peak (SOBP) width agrees with a desired width during irradiation with a beam. The device for outputting a charged particle beam includes a charged particle beam generator 1 including a synchrotron 4; a range modulation device such as a range modulation wheel (RMW) 28 which forms a Bragg peak of an ion beam extracted from this charged particle beam generator 1; an irradiation device 16 which is located in the direction of ion beam propagation of this RMW device 28 and includes a dose monitor 31 for detecting a dose of the ion beam; and an SOBP width calculation device 73 which calculates ion beam Bragg peak formed by the RMW device 28 based on a detection value of the dose monitor 31.
摘要:
A particle beam therapy system comprises a charged particle beam generator for generating a charged particle beam, two or more treatment rooms provided with respective irradiation devices for irradiating the charged particle beam, a beam line for transporting the charged particle beam extracted from the charged particle beam generator to the irradiation device in selected one of the two or more treatment rooms, a beam detection processing/control unit for monitoring a beam state of the charged particle beam in one of the two or more irradiation devices, and a selector for switchably selecting one of the irradiation devices which is to be monitored by the beam detection processing/control unit. The selector is controlled such that the selector establishes connection with the irradiation device in the selected one treatment room to which the charged particle beam is transported through the beam line. The system configuration can be simplified while maintaining the operation efficiency.
摘要:
A beam extraction process (interruption and restart) is appropriately performed when a failure occurs during irradiation of a spot group. A charged particle irradiation system includes a synchrotron 12 and a scanning irradiation unit 15 that scans an ion beam extracted from the synchrotron over a subject. The extraction of the ion beam from the synchrotron is stopped on the basis of a beam extraction stop command. Scanning magnets 5A and 5B are controlled to change a point (spot) to be irradiated with the ion beam, while the extraction of the ion beam is stopped. The extraction of the ion beam from the synchrotron is restarted after the change of the spot to be irradiated. When a relatively minor failure in which continuous irradiation would be possible occurs during irradiation of a certain spot with the beam, the extraction of the beam is not immediately stopped.
摘要:
A beam extraction process (interruption and restart) is appropriately performed when a failure occurs during irradiation of a spot group. A charged particle irradiation system includes a synchrotron 12 and a scanning irradiation unit 15 that scans an ion beam extracted from the synchrotron over a subject. The extraction of the ion beam from the synchrotron is stopped on the basis of a beam extraction stop command. Scanning magnets 5A and 5B are controlled to change a point (spot) to be irradiated with the ion beam, while the extraction of the ion beam is stopped. The extraction of the ion beam from the synchrotron is restarted after the change of the spot to be irradiated. When a relatively minor failure in which continuous irradiation would be possible occurs during irradiation of a certain spot with the beam, the extraction of the beam is not immediately stopped.
摘要:
A charged particle beam irradiation system comprises a high-speed steerer (beam dump device) 100 disposed in a course of a beam transport line 4 through which an ion beam is extracted from a charged-particle beam generator 1. The beam dump device 100 is provided with dose monitoring devices 105, 106 for measuring a dose of an ion beam applied to a beam dump 104 so that the intensity of the ion beam can be measured without transporting the ion beam to irradiation nozzles 15A through 15D. Thus, the system is capable of adjusting the intensity of an ion beam extracted from a synchrotron without operating each component of a beam transport line, and an irradiation nozzle.
摘要:
A first manual input device for inputting an irradiation ready state is provided in each treatment room or a control room formed corresponding to the treatment room. A safety device confirms that preparations for generation of an ion beam in an accelerator are completed and preparations for transport of the ion beam in a beam transport system for introducing the ion beam to an irradiation unit in the treatment room selected in response to a ready signal from the first manual input device are completed, followed by outputting ready information. A ready state display unit for displaying the ready information is provided. In the treatment room or the control room, a second manual input device is provided for inputting an irradiation start instruction when the ready information is displayed by the ready state display unit.
摘要:
A charged particle beam irradiation system in which the energy, Bragg peak, and irradiation depth of a charged particle beam, with which a patient is to be irradiated, can be checked in real time just before actual irradiation. Just before the actual irradiation, by providing a high-speed steering magnet with 100% current, a checking beam is intentionally hit into a beam damper. By using a dosimeter and a dose measuring device in front thereof, extraction beam intensity is measured. By using a multi-layer beam monitor, a dose distribution thereof is measured. Accordingly, just before the actual irradiation, the energy, Bragg peak, and irradiation depth of the charged particle beam, with which the patient is to be irradiated, can be checked accurately and in real time. When the beam has a desired dose distribution as a result of checking, continuously, extraction control is performed.
摘要:
To ensure irradiation accuracy and safety, even when an irradiation device employing a different irradiation method is used, disclosed is herein a charged particle beam irradiation apparatus that irradiates an irradiation target with charged particle beams includes:a charged particle beam generator for generating the charged particle beams; a passive scattering irradiation device and a scanning irradiation device, both for irradiating the irradiation target with the charged particle beams; a beam transport system for transporting the charged particles beam extracted from the charged particle beam generator, to selected one of the two irradiation devices; and a central controller that modifies operating parameters on the charged particle beam generator, according to the irradiation method adopted for the selected irradiation device.
摘要:
The present invention improves the accuracy of therapy by checking in real time whether an spread-out Bragg peak (SOBP) width agrees with a desired width during irradiation with a beam. The device for outputting a charged particle beam includes a charged particle beam generator 1 including a synchrotron 4; a range modulation device such as a range modulation wheel (RMW) 28 which forms a Bragg peak of an ion beam extracted from this charged particle beam generator 1; an irradiation device 16 which is located in the direction of ion beam propagation of this RMW device 28 and includes a dose monitor 31 for detecting a dose of the ion beam; and an SOBP width calculation device 73 which calculates ion beam Bragg peak formed by the RMW device 28 based on a detection value of the dose monitor 31.