Abstract:
A head mounted display including a frame wearable on a user's head, first and second imaging apparatuses integrating on the frame and at least one control unit. Each imaging apparatus includes a display unit having a plurality of pixels arranged in matrix. The control unit is utilized for selectively setting a part of the pixels as display pixels and the rest of the pixels as non-display pixels, thereby determining the positions of display areas on the display units. Two virtual images respectively seen by a user can be adjusted to substantially coincide with each other by scrolling the positions of the display areas on the display units. The present invention also provides an image adjustment method for the head mounted display.
Abstract:
A head-mounted display includes a body including an optical visualizing device. The optical visualizing device includes a displaying unit, a housing, a polarizing unit and a front cover. The displaying unit is adapted to display an image. The housing is adapted to accommodate the displaying unit and having a front surface. The polarizing unit is disposed in front of the displaying unit accommodated in the housing for adjusting the intensity of ambient lights that enter the displaying unit. The front cover is adapted to cover the front surface of the housing. The polarizing unit is controlled by the viewer to switch between see-through and non-see-through mode.
Abstract:
An image projection apparatus. The image projection apparatus comprises a light source and LCD panel. The LCD panel comprises a plurality of pixels and color filters thereon. Light from the light source is projected to the pixels along an irradiative path and the LCD panel selectively reflects the projected light in accordance with an image signal along a projective path, wherein an angle between the irradiative and projective paths exceeds 0°.
Abstract:
A head-mounted display (HMD) comprises a frame for hanging on a user's head, and a display device affixed to the frame. The display device comprises alight source, a driving circuit for generating data signals, a polarization beam splitter (PBS), for passing the light emitted from the light source, a liquid crystal on silicon panel (LCOS panel) for reflecting the light from the PBS based on the data signal generated by the driving circuit, and a lens group including a biconvex glass spherical prism and an aspherical plastic prism. The lens group is used for focusing the reflected light from the LCOS panel.
Abstract:
A light-emitting diode and the manufacturing method thereof are disclosed. The manufacturing method comprises the steps of: sequentially forming a refraction dielectric layer, a bonding layer, an epitaxy structure and a first electrode on a permanent substrate, wherein the epitaxy structure comprises a first conductivity type semiconductor layer, an active layer and a second conductivity type semiconductor layer stacked in sequence; and forming a second electrode on the portion surface of the second conductivity type semiconductor layer. Therefore the light-emitting diode is achieved.
Abstract:
An LCD TV includes a housing, an LCD screen panel disposed on the front side of the housing, a first mirror disposed on the back side of the housing and a projection-based backlight system disposed in a lower cabinet of the housing, wherein the projection-based backlight system provides polarized light for the LCD screen panel through the first mirror. The projection-based backlight system can provide uniformly polarized light and increase polarization efficiency as well as be easily achieved by using low-cost optical components.
Abstract:
Display apparatus such as a see-through head-mounted display (HMD) through which a viewer could capture a scene while seeing an object through the apparatus is disclosed. In the display apparatus, a liquid crystal on silicon (LCOS) panel with a color filter attached to the LCOS panel is utilized. Accordingly, the compactness, light weight and low cost requirements can be met.
Abstract:
The present invention relates to an illumination device of an LCD projection system. The illumination device comprises a light source, a quarter-wave retardation and a wire grid polarizer. The light source is used for providing light. The quarter-wave retardation is disposed near the light source. The wire grid polarizer is disposed parallel to the quarter-wave retardation, and is associated with the quarter-wave retardation to polarize the light from the light source. P-polarized light can pass through the wire grid polarizer. S-polarized light cannot pass through the wire grid polarizer, and is reflected to the quarter-wave retardation to become circular polarized light. The circular polarized light is reflected by a parabolic surface of the light source and passes through the quarter-wave retardation again to convert into p-polarized light. The converted p-polarized light can pass through the wire grid polarizer. Therefore, the illumination device of the invention can provide high-efficiency polarized light. The illumination device can achieve high polarization conversion efficiency, and can be manufactured easily to reduce costs.
Abstract:
A package structure for packaging a liquid crystal display (LCD) panel. The package structure includes a heat sink for positioning the LCD panel, a transparent cover against the LCD panel, and a sealing material for sealing the LCD panel within the package structure.
Abstract:
A light-emitting diode and the manufacturing method thereof are disclosed. The manufacturing method comprises the steps of: sequentially forming a refraction dielectric layer, a bonding layer, an epitaxy structure and a first electrode on a permanent substrate, wherein the epitaxy structure comprises a first conductivity type semiconductor layer, an active layer and a second conductivity type semiconductor layer stacked in sequence; and forming a second electrode on the portion surface of the second conductivity type semiconductor layer. Therefore the light-emitting diode is achieved.