Abstract:
A computer for assisting in determining the strength of fixing a craniofacial surgery patch comprises a storage device for storing a medical image and a central processing unit, the central processing unit carry out a method for assisting in determining the strength of fixing a craniofacial surgery patch. The method includes obtaining a medical image; establishing a skull model according to the medical image; receiving a patch setting command, and disposing a patch model on the skull model according to the patch setting command; generating an internal grid mesh data of the skull model disposed with the patch model; executing a biomechanical simulation of a patch structural strength according to the skull model disposed with the patch model, the internal grid mesh data and a boundary condition; and providing a stress distribution, a strain distribution or a displacement distribution of the patch model to assist in determining.
Abstract:
A monitor system for monitoring riverbed elevation changes at bridge piers is revealed. The monitor system includes a container, a rail, a holder, a photographic unit, a processor and a transmission unit. The container is disposed at a pier under the water and the rail is mounted in the container. The holder is arranged at the rail and is moved on the rail. The photographic unit is disposed on the holder to capture a monitor image of a riverbed under the water. As to the processor, it processes the monitor image so as to learn elevation change of the riverbed under the water. By the transmission unit, the riverbed elevation change is sent to a remote monitor unit so as to get the riverbed elevation according to the riverbed elevation change. Thus the riverbed elevation change at the bridge pier is monitored in real time.
Abstract:
A computer for aiding determination of Obstructive Sleep Apnea (OSA) includes a storage device storing with a medical image and a central processing unit (CPU). The CPU executes a method for aiding determination of OSA. The method for aiding determination of OSA includes the following steps. The medical image is obtained. An upper airway model is established. A narrowest cross-section and a nasopharyngeal boundary cross-section are defined in the airway model. A cross-sectional area of the narrowest cross-section and a cross-sectional area of the nasopharyngeal boundary cross-section are calculated. A stenosis rate is calculated according to the cross-sectional area of the narrowest cross-section and the cross-sectional area of the nasopharyngeal boundary cross-section. The stenosis rate is provided. In addition, in the method for aiding determination of OSA, a respiratory flow field simulation may be further performed to obtain and provide a flow field pressure distribution of the upper airway model.
Abstract:
A monitor system for monitoring riverbed elevation changes at bridge piers is revealed. The monitor system includes a container, a rail, a holder, a photographic unit, a processor and a transmission unit. The container is disposed at a pier under the water and the rail is mounted in the container. The holder is arranged at the rail and is moved on the rail. The photographic unit is disposed on the holder to capture a monitor image of a riverbed under the water. As to the processor, it processes the monitor image so as to learn elevation change of the riverbed under the water. By the transmission unit, the riverbed elevation change is sent to a remote monitor unit so as to get the riverbed elevation according to the riverbed elevation change. Thus the riverbed elevation change at the bridge pier is monitored in real time.
Abstract:
A probe monitoring system for riverbed elevation monitoring at bridge piers is revealed. The system includes a housing, a measuring rod, a moving member, a control module, a photographic unit and a sensing unit. The housing is fixed on the pier. Both the moving member for driving the measuring rod and the control module for control of the moving member are mounted in the housing. When the control module drives the measuring rod to move downward and the sensing unit on the bottom of the measuring rod approaches the riverbed, a sensing signal is sent to the control module. Thus the moving member stops moving the measuring rod and the photographic unit takes pictures of the measuring rod to generate an image. Then the riverbed elevation is obtained according to the image or the movement of the moving member and is sent to a remote monitor unit for real-time monitoring.
Abstract:
A probe monitoring system for riverbed elevation monitoring at bridge piers is revealed. The system includes a housing, a measuring rod, a moving member, a control module, a photographic unit and a sensing unit. The housing is fixed on the pier. Both the moving member for driving the measuring rod and the control module for control of the moving member are mounted in the housing. When the control module drives the measuring rod to move downward and the sensing unit on the bottom of the measuring rod approaches the riverbed, a sensing signal is sent to the control module. Thus the moving member stops moving the measuring rod and the photographic unit takes pictures of the measuring rod to generate an image. Then the riverbed elevation is obtained according to the image or the movement of the moving member and is sent to a remote monitor unit for real-time monitoring.
Abstract:
The present invention relates to a multi-lens monitoring system for bed elevation around a pier according to the present invention comprises a container, a holder, a plurality of photographing units, and a processing module. The container is disposed on the pier; the holder is disposed inside the container; and the plurality of photographing units are disposed on the holder for photographing the bed under water and producing a monitoring image. The processing module is used for activating one of the plurality of photographing units for photographing the bed under water. The processing module also analyzes the monitoring image, gives the elevation variation of the bed, and transmits the elevation variation of the bed to a remote monitoring unit for real-timely monitoring and recording. During the monitoring process, the processing module will change activating one of the plurality of photographing units according to the monitoring image, and hence the electrical power can be saved.
Abstract:
A computer for aiding determination of Obstructive Sleep Apnea (OSA) includes a storage device storing with a medical image and a central processing unit (CPU). The CPU executes a method for aiding determination of OSA. The method for aiding determination of OSA includes the following steps. The medical image is obtained. An upper airway model is established. A narrowest cross-section and a nasopharyngeal boundary cross-section are defined in the airway model. A cross-sectional area of the narrowest cross-section and a cross-sectional area of the nasopharyngeal boundary cross-section are calculated. A stenosis rate is calculated according to the cross-sectional area of the narrowest cross-section and the cross-sectional area of the nasopharyngeal boundary cross-section. The stenosis rate is provided. In addition, in the method for aiding determination of OSA, a respiratory flow field simulation may be further performed to obtain and provide a flow field pressure distribution of the upper airway model.
Abstract:
A computer for assisting in determining the strength of fixing a craniofacial surgery patch comprises a storage device for storing a medical image and a central processing unit, the central processing unit carry out a method for assisting in determining the strength of fixing a craniofacial surgery patch. The method includes obtaining a medical image; establishing a skull model according to the medical image; receiving a patch setting command, and disposing a patch model on the skull model according to the patch setting command; generating an internal grid mesh data of the skull model disposed with the patch model; executing a biomechanical simulation of a patch structural strength according to the skull model disposed with the patch model, the internal grid mesh data and a boundary condition; and providing a stress distribution, a strain distribution or a displacement distribution of the patch model to assist in determining.
Abstract:
The present invention relates to a multi-lens monitoring system for bed elevation around a pier according to the present invention comprises a container, a holder, a plurality of photographing units, and a processing module. The container is disposed on the pier; the holder is disposed inside the container; and the plurality of photographing units are disposed on the holder for photographing the bed under water and producing a monitoring image. The processing module is used for activating one of the plurality of photographing units for photographing the bed under water. The processing module also analyzes the monitoring image, gives the elevation variation of the bed, and transmits the elevation variation of the bed to a remote monitoring unit for real-timely monitoring and recording. During the monitoring process, the processing module will change activating one of the plurality of photographing units according to the monitoring image, and hence the electrical power can be saved.