Abstract:
A device is provided for monitoring a plurality of appliances, wherein each appliance is connected to an electrical circuit having a first wire and a second wire. The device includes a plurality of cores, each of the plurality of cores being constructed to be able to surround one of the first wires of each circuit and having a secondary winding at which an electrical signal is generated in response to a current polarity change in the first wire. A multiplexer is connected to the secondary winding of each of the plurality of cores. A processor is connected to the multiplexer to monitor the phase relationship between an AC voltage an AC current of each appliance connected to one of the plurality of circuits and to determine information relating to the function of the appliance based on the phase relationship. The device may be located at the circuit breaker box of an establishment.
Abstract:
A control for an automatic washing machine with a reversing permanent split capacitor (PSC) drive motor. Separate ferrite core sensors surround each of two PSC motor windings. A sense winding is threaded through both sensors. A brief output voltage is generated whenever the alternating current in either PSC motor winding passes through a zero-crossing and when the sense winding is wound with proper mutual polarity, an output voltage is generated in response to zero-crossings of a brief, residual alternating current which flows in both PSC motor windings and the capacitor when the rotating PSC motor is cycled OFF. The circuitry, in combination with the sensors, samples the leading or lagging phase angle of the PSC motor auxiliary or main winding, respectively, at a sample rate of two-times the line frequency when the PSC motor is ON; and further monitors the PSC motor braking phenomena by counting the residual current alternations when the PSC motor is cycled OFF following the powered portion of each CW or CCW agitator stroke. The raw PSC motor phase data is used in microcomputer programs to compute motor start time or load torque dither. This computed information and the PSC motor braking data, is used by other software programs to automatically control various functions of the washing machine such as the fill water level and agitator stroke angle; to control events in an operational sequence such as the duration of the agitation and spin operations; and to provide diagnostic information such as spin off-balance detection.
Abstract:
A control for a clothes dryer with an induction drive motor and an electric resistance heater element. A single sense winding is threaded through sensors monitoring drive motor current and heater current, generating an output voltage each time the alternating motor or heater current passes through a zero-crossing. The control monitors the ON/OFF condition of the heater and samples the lagging phase angle of the motor current, to provide an improved means of detecting when the clothes load is dry by measuring variation in motor torque due to minute differences in the way that the clothes load is tumbling from one drum revolution to the next revolution, ignoring cyclical, repetitive variation due to uneven drum rotational friction. The control provides a clothes cooldown period with controlled moisture regain as per the user dryness selection. In addition, numerous diagnostic conditions are monitored at the start of each cycle, or, throughout each cycle, including: 208 or 240 VAC service voltage indentification; motor start detection; drum acceleration detection; empty drum detection; motor or heater open/short circuit detection; open door detection; broken belt detection; and restricted air flow detection.
Abstract:
A method and apparatus for providing a temperature reading to a micro-computer without the use of a digital to analog converter. An apparatus and method is provided for measuring the temperature of an environment by comparing the current flow through a thermistor with the current flow through a known resistance. In the preferred embodiment, the temperature of the exhaust air stream of a dryer is measured by alternately supplying current through the thermistor disposed in the exhaust air stream and through the known resister to the inverting input of a comparator, a full wave rectified signal is supplied to the non-inverting input of the comparator and the width of the volt pulse produced at the output of the comparators is monitored for determining the temperature of the exhaust air stream.
Abstract:
A control for a clothes dryer with an induction drive motor and an electric resistance heater element. A single sense winding is threaded through sensors monitoring drive motor current and heater current, generating an output voltage each time the alternating motor or heater current passes through a zero-crossing. The control monitors the ON/OFF condition of the heater and samples the lagging phase angle of the motor current, to provide an improved means of detecting when the clothes load is dry by measuring variation in motor torque due to minute differences in the way that the clothes load is tumbling from one drum revolution to the next revolution, ignoring cyclical, repetitive variation due to uneven drum rotational friction. The control provides a clothes cooldown period with controlled moisture regain as per the user dryness selection. In addition, numerous diagnostic conditions are monitored at the start of each cycle, or, throughout each cycle, including: 208 or 240 VAC service voltage identification; motor start detection; drum acceleration detection; empty drum detection; motor or heater open/short circuit detection; open door detection; broken belt detection; and restricted air flow detection.
Abstract:
A control for an automatic washing machine with a reversing permanent split capacitor (PSC) drive motor. Separate ferrite core sensors surround each of two PSC motor windings. A sense winding is threaded through both sensors. A brief output voltage is generated whenever the alternating current in either PSC motor winding passes through a zero-crossing and when the sense winding is wound with proper mutual polarity, an output voltage is generated in response to zero-crossings of a brief, residual alternating current which flows in both PSC motor windings and the capacitor when the rotating PSC motor is cycled OFF. The circuitry, in combination with the sensors, samples the leading or lagging phase angle of the PSC motor auxiliary or main winding, respectively, at a sample rate of two-times the line frequency when the PSC motor is ON. The raw PSC motor phase data is used in microcomputer programs to compute motor start time or load torque dither. This computed information and the PSC motor braking data, is used by other software programs to automatically control various functions of the washing machine such as the fill water level and agitator stroke angle; to control events in an operational sequence such as the duration of the agitation and spin operations; and to provide diagnostic information such as spin off-balance detection.
Abstract:
A control for a clothes dryer with an induction drive motor and an electric resistance heater element. A single sense winding is threaded through sensors monitoring drive motor current and heater current, generating an output voltage each time the alternating motor or heater current passes through a zero-crossing. The control monitors the ON/OFF condition of the heater and samples the lagging phase angle of the motor current, and provides an improved system of detecting when the clothes load is dry. The control provides a clothes cool-down period with controlled moisture regain as per the user dryness selection. Numerous heater related diagnostic conditions are monitored at the start of each cycle, or, throughout each cycle, including: heater ground fault detection; 208 or 240 VAC service voltage identification; heater open/short circuit detection; open door detection; heater box thermostat cycling; and restricted air flow detection.
Abstract:
A control for a clothes dryer with an induction drive motor and an electric resistance heater element. A single sense winding is threaded through sensors monitoring drive motor current and heater current, generating an output voltage each time the alternating motor or heater current passes through a zero-crossing. The control monitors the ON/OFF condition of the heater and samples the lagging phase angle of the motor current, and provides an improved means of detecting when the clothes load is dry. The control provides a clothes cooldown period with controlled moisture regain as per the user dryness selection. Numerous heater related diagnostic conditions are monitored at the start of each cycle, or, throughout each cycle, including: heater ground fault detection; 208 or 240 VAC service voltage identification; heater open/short circuit detection; open door detection; heater box thermostat cycling; and restricted air flow detection.
Abstract:
A refrigeration system having an improved defrost control including a thermal relay, a bimetal thermostat, and a thick film/hybrid microelectronic element responsive to cumulative humidity of the refrigerated air comprising a moisture sensor/cumulator portion and a control circuit portion on a ceramic substrate. The sensor/cumulator absorbs water vapor at a rate proportional to the relative humidity of the refrigerated air and activates a heater element of the thermal relay to initiate a defrost period. The element is reset by thermally removing a preselected amount of the absorbed water vapor. The defrost period is terminated by a bimetal thermostat. Alternatively, a thermal responsive resistor may be included in the control circuit to terminate the defrost period.
Abstract:
The present invention provides an adaptive fill control for controlling the amount of liquid added in one or more liquid fill periods in a dishwasher cycle. The amount of liquid added in a liquid fill cycle is adjusted by activating the dishwasher drain pump while continuing to operate the dishwasher circulation pump. The accumulated time from the start of the drain pump operation until the circulation pump experiences a liquid starvation episode is compared to a predetermined optimum time period for the circulation pump to experience liquid starvation. The sign and difference between to accumulated time period and optimum time period is used to adjust the amount liquid added in the next liquid fill period. A number of sensors for detecting a circulation pump liquid starvation episode are disclosed.