Abstract:
A method and plant for discharging components that are less volatile than oxygen from an air separation plant that contains a main heat exchanger a side condenser and a two-column distillation column system for nitrogen-oxygen separation. The side condenser is constructed as a condenser-evaporator and is arranged in a vessel. A part of the feed air is cooled in the main heat exchanger and liquefied at least in part in the side condenser. A first oxygen fraction is withdrawn in the liquid state from the low-pressure column, introduced into the vessel of the side condenser and in part vaporized. A purge stream is taken off from the bottom of the vessel in the liquid state and discharged or withdrawn as end product. The vessel has a mass transfer section above the side condenser, which mass transfer section corresponds to more than one theoretical plate and fewer than 10 theoretical plates.
Abstract:
A method and plant for discharging components that are less volatile than oxygen from an air separation plant that contains a main heat exchanger a side condenser and a two-column distillation column system for nitrogen-oxygen separation. The side condenser is constructed as a condenser-evaporator and is arranged in a vessel. A part of the feed air is cooled in the main heat exchanger and liquefied at least in part in the side condenser. A first oxygen fraction is withdrawn in the liquid state from the low-pressure column, introduced into the vessel of the side condenser and in part vaporized. A purge stream is taken off from the bottom of the vessel in the liquid state and discharged or withdrawn as end product. The vessel has a mass transfer section above the side condenser, which mass transfer section corresponds to more than one theoretical plate and fewer than 10 theoretical plates.
Abstract:
A method and device to produce oxygen by the low-temperature separation of air at variable energy consumption. A distillation column system comprises a high-pressure column, a low-pressure column and a main condenser, a secondary condenser and a supplementary condenser. Gaseous nitrogen from the high-pressure column is liquefied in the main condenser in indirect heat exchange with an intermediate liquid from the low-pressure column. A first liquid oxygen stream from the bottom of the low-pressure column is evaporated in the secondary condenser in indirect heat exchange with feed air to obtain a gaseous oxygen product. The supplementary condenser serves as a bottom heating device for the low-pressure column and is heated by means of a first nitrogen stream from the distillation column system, which nitrogen stream was compressed previously in a cold compressor.
Abstract:
A method and device to produce oxygen by the low-temperature separation of air at variable energy consumption. A distillation column system comprises a high-pressure column, a low-pressure column and a main condenser, a secondary condenser and a supplementary condenser. Gaseous nitrogen from the high-pressure column is liquefied in the main condenser in indirect heat exchange with an intermediate liquid from the low-pressure column. A first liquid oxygen stream from the bottom of the low-pressure column is evaporated in the secondary condenser in indirect heat exchange with feed air to obtain a gaseous oxygen product. The supplementary condenser serves as a bottom heating device for the low-pressure column and is heated by means of a first nitrogen stream from the distillation column system, which nitrogen stream was compressed previously in a cold compressor.