Abstract:
A liquefaction apparatus that automatically adjusts the load on the liquefaction apparatus correspondingly with an upper limit value of contracted power in different time slots, and which is capable of maximizing the amount of liquefied product produced and of achieving optimum operating efficiency is provided. In certain embodiments, the liquefaction apparatus can include: a production amount calculation unit 91 for obtaining an actual production amount of a liquefied product; a predicted power calculation unit 92 for obtaining a predicted power amount after a predetermined time has elapsed, on the basis of an integrated power value obtained by integrating a usage power; and a power demand control unit 93 for comparing the predicted power amount and a moving average of instantaneous power, and controlling a discharge flow rate of a compressor 3 in such a way as to come infinitely close to a target value, without exceeding the target value, and while using the larger value of the predicted power amount and the moving average of instantaneous power as a value being controlled.
Abstract:
Systems, devices, and methods for recovering mixed refrigerant and/or nitrogen within liquefaction systems are provided. The systems, devices, and methods facilitate recovering mixed refrigerant (MR) and/or nitrogen vapor that can leak from a compressor, separating the MR from the nitrogen, and reusing the MR and/or the nitrogen within the liquefaction system. Recovering and reusing MR and/or nitrogen can minimize loss of MR and nitrogen which can lower the total operating cost of a liquefaction system. Additionally, recovering the MR, rather than burning it, can reduce environmental emissions by reducing the amount of MR that is burned.
Abstract:
Described herein are systems and processes to produce liquefied natural gas (LNG) using liquefied nitrogen (LIN) as the refrigerant. Greenhouse gas contaminants are removed from the LIN using a greenhouse gas removal unit. The LNG is compressed prior to being cooled by the LIN.
Abstract:
A method for the integration of a nitrogen liquefier and liquefaction of natural gas for the production of liquefied natural gas and liquid nitrogen is provided. The method may include providing a nitrogen liquefaction unit and providing a natural gas liquefaction unit. Liquefaction of the nitrogen can be achieved via a nitrogen refrigeration cycle within the nitrogen liquefaction unit. Liquefaction of the natural gas can be achieved through the use of natural gas letdown and a second nitrogen refrigeration cycle. The two liquefaction units can be integrated via a common nitrogen recycle compressor, thereby providing significant capital savings.
Abstract:
This invention relates to a method for liquefying a gas containing at least 60 mol % of CO2, in order to produce at least one liquid product, wherein the gas is cooled in order to form a fluid flow, at least a portion of the liquid or supercritical flow is cooled in a heat exchanger in order to form a cycle fluid having a cycle pressure, the cycle fluid is divided into at least two fractions including an auxiliary fraction, one of the fractions being expanded up to a first pressure in a valve in order to form a biphasic mixture, and then sent to a phase separator. The liquid fraction of the phase separator is vaporized so as to form a vaporized gas in the exchanger, the vaporized gas then being expanded from the first pressure to a second pressure in an expansion means, and then compressed in the cycle compressor and mixed with the first feed gas.
Abstract:
Methods and systems for removing nitrogen from a natural gas feed stream. The systems and methods generally include a heat exchange unit, a separation unit, and a liquid methane pump unit, where the separation unit produces a liquid methane bottoms stream and a gaseous overhead stream enriched in nitrogen and the liquid methane pump unit compresses the liquid methane bottoms stream and then pumps the stream through the heat exchange unit to cool a natural gas feed stream. In some embodiments the liquid methane pump unit is a sleeve bearing type unit. Beneficially, the disclosed systems and methods incorporate high head pumps for liquid methane compression instead of vaporizing the liquid methane and compressing it in a gaseous compression units that are typically used for this purpose, saving space, materials, and power.
Abstract:
Disclosed are a method and system involving pressurizing an atmospheric gas stream to form at least a compressed atmospheric gas stream, directing the compressed atmospheric gas stream to a first regenerator for cooling, pressurizing to above a second predetermined pressure to form at least a supercritical atmospheric gas stream, directing the supercritical atmospheric gas stream to a second regenerator for cooling, reducing pressure to form at least a liquefied atmospheric gas stream, selectively storing the liquefied atmospheric gas stream, pressurizing the liquefied atmospheric gas stream to form at least a pressurized liquefied atmospheric gas stream, heating the pressurized liquefied atmospheric gas stream in the second regenerator to form at least a heated stream, expanding the heated stream to form at least a medium pressure atmospheric gas stream, directing the medium pressure atmospheric gas stream to the first regenerator, and heating the medium pressure atmospheric gas stream in the first regenerator.
Abstract:
A system is set forth to increase the capacity of an LNG-based liquefier in a cryogenic air separation unit wherein, in a low production mode, the nitrogen that is fed to the LNG-based liquefier consists only of at least a portion of the high pressure nitrogen from the distillation column system while in a high production mode, a supplemental compressor is used to boost the pressure of at least a portion of the low pressure nitrogen from the distillation column system to create additional (or replacement) feed to the LNG-based liquefier. A key to the present invention is the supplemental compressor and the associated heat exchange equipment is separate and distinct from the LNG-based liquefier. This allows its purchase to be delayed until a capacity increase is actually needed and thus avoid building an oversized liquefier based on a speculative increase in liquid product demand.
Abstract:
A process for separating carbon dioxide from a carbon dioxide containing fluid comprises the steps of: compressing the fluid in a compressor to form a compressed fluid, drying at least part of the compressed fluid to form a compressed and dried fluid, cooling at least part of the compressed and dried fluid to form a compressed, dried and cooled fluid, separating the compressed, dried and cooled fluid at a temperature lower than 0° C. into a carbon dioxide rich stream, a carbon dioxide lean stream and at least one intermediate purity liquid stream having a carbon dioxide purity lower than that of the carbon dioxide rich stream and higher than that of the carbon dioxide lean stream, expanding at least one intermediate purity liquid stream to produce at least one expanded stream using at least one expanded stream to cool the compressed and dried fluid and recycling at least part of the expanded stream.
Abstract:
Nitrogen is rejected from a feed gas stream comprising methane and nitrogen so as to form a methane product. The feed gas is separated in a double rectification column comprising a higher pressure rectification column 14, a lower pressure rectification column 16, and a condenser-reboiler 18. Product methane is withdrawn from the column 16 by a pump 42 and is vaporised. A flow of gas is recycled from the column 16 to the column 14, being warmed in main heat exchanger 4. A first part of the warmed recycle gas being compressed in compressor 48 to a first pressure and introduced into the higher pressure rectification column 14. A second part of the warmed recycle gas is compressed in the compressor 48 and condensed in a second condenser-reboiler associated with an intermediate main exchange region of the lower pressure column 16 and is returned to the higher pressure rectification column 14.