摘要:
An implantable device, such as an implantable medical device (IMD) includes at least two radio frequency (RF) antennas and may additionally include an RF communication circuit. The RF antennas are spatially diverse, are disposed adjacent a housing, and are each configured to receive RF signals transmitted to the IMD from a remote RF signal source. The RF communication circuit, if included, is disposed within the housing and is configured to selectively receive the RF signals received by one or more of the spatially diverse RF antennas.
摘要:
Improved telemetry antennas and methods of fabrication for an implantable medical device (IMD) for use in uplink telemetry (UT) and downlink telemetry (DT) transmissions between the IMD and an external medical device (EMD) are disclosed. A first telemetry antenna element is supported to extend in a first direction along a minor side of the IMD housing by a first header segment, and a second antenna element is supported to extend in a second direction along a second minor side of the IMD housing by a second header segment. The first and second antenna elements are supported to extend apart at substantially 90° to one another, i.e., substantially orthogonally, in substantially a common plane to optimize UT transmission and DT reception of UHF telemetry signals by at least one of the first and second antenna elements depending upon the mutual spatial orientation with the antenna elements of an EMD antenna.
摘要:
An implantable medical device is provided including a housing, an external circuit element extending outwardly from the housing, an internal circuit enclosed by the housing, a feedthrough array disposed along the housing having at least one filtered feedthrough and at least one unfiltered feedthrough, wherein the unfiltered feedthrough is adapted for connection to the outwardly extending circuit element; and including means for minimizing electromagnetic coupling between the filtered feedthrough and the unfiltered feedthrough.
摘要:
A wireless communication system is provided that includes an antenna structure adapted for coupling to a medical device antenna when the medical device is not implanted in a patient's body. The antenna structure effectively extends the medical device antenna length, thereby improving the efficiency and reliability of a communication link between the medical device and a programmer or monitor outside the implanted environment. The antenna structure is fabricated from any conductive material, which may be in the form of conductive wire, tape, ink, foil, film, adhesive or the like, and is attached to a portion of a medical device packaging assembly or another accessory device or substrate such as a pouch or overlay. The antenna structure may be a monopole, dipole, slot antenna, microstrip patch, or loop antenna, and may be fixed or movable relative to the substrate on which it is implemented.
摘要:
Unscheduled wireless communication with a medical device is achieved by operating a receiver of the medical device in a series of modes. Each mode provides an increasingly selective evaluation of received RF energy. The receiver, when operating in a first mode, is capable of detecting the presence of RF energy transmitted from a communicating device. The receiver, when operating in a second mode, consumes more energy than the first mode and analyzes the RF energy to determine whether it contains the appropriate type of modulation. When operating in a third mode, the receiver consumes more energy than the second mode, and operates the full receiver to begin communication with the communicating device. The receiver opens a communication session after the RF energy has passed the evaluation by the series of modes to receive an unscheduled communication.
摘要:
A communications device facilitates communication between a medical device and a wireless communications network and comprises a telemetry circuit configured to wirelessly communicate with one or more medical devices, and a computer network communication interface configured to wirelessly communicate directly with a wireless computer network. The communications device also comprises a peripheral device communication interface configured to communicate with a wireless peripheral device and a processor being in operable communication with, and configured to control operations of, the telemetry circuit, the network communication interface, and the peripheral device communication interface.
摘要:
A communications device facilitates communication between a medical device and a wireless communications network and comprises a telemetry circuit configured to wirelessly communicate with one or more medical devices, and a computer network communication interface configured to wirelessly communicate directly with a wireless computer network. The communications device also comprises a peripheral device communication interface configured to communicate with a wireless peripheral device and a processor being in operable communication with, and configured to control operations of, the telemetry circuit, the network communication interface, and the peripheral device communication interface.
摘要:
A telemetry antenna for an implantable medical device includes one or more portions having a non-linear configuration. In some embodiments, the non-linear configuration provides an antenna having a greater antenna length than the linear lengthwise dimension of the antenna structure. In some embodiments, the non-linear configuration is a serpentine pattern.
摘要:
An implantable medical device system that includes an implantable medical device, along with a transceiver device that exchanges data with the patient, between the patient and the implantable medical device, and between a remote location and the implantable medical device. A communication device coupled to the transceiver device exchanges data with the transceiver device, the implantable medical device through the receiver device, and between the transceiver device and the remote location to enable bi-directional data transfer between the patient, the implantable medical device, the transceiver device, and the remote location. A converter unit converts transmission of the data from a first telemetry format to a second telemetry format, and a user interface enables information to be exchanged between the transceiver device and the patient, between the implantable medical device and the patient through the transceiver device, and between the patient and the remote location through the transceiver device.
摘要:
Unscheduled wireless communication with a medical device is achieved by operating a receiver of the medical device in a series of modes. Each mode provides an increasingly selective evaluation of received RF energy. The receiver, when operating in a first mode, is capable of detecting the presence of RF energy transmitted from a communicating device. The receiver, when operating in a second mode, consumes more energy than the first mode and analyzes the RF energy to determine whether it contains the appropriate type of modulation. When operating in a third mode, the receiver consumes more energy than the second mode, and operates the full receiver to begin communication with the communicating device. The receiver opens a communication session after the RF energy has passed the evaluation by the series of modes to receive an unscheduled communication.