Abstract:
An implantable medical device includes a housing forming an internal cavity, the housing defining a profile with a height and a width and further defining a thickness perpendicular to its profile. The thickness of the housing is shorter than both the height and the width of the profile of the housing. The implantable medical device further includes at least one battery within the internal cavity, at least one capacitor adjacent the battery within the internal cavity, the capacitor and the battery being located along a common plane within the internal cavity, and circuitry within the internal cavity. The circuitry extends over both the battery and the capacitor within the internal cavity such that the circuitry is in a stacked arrangement relative to the battery and the capacitor.
Abstract:
This disclosure includes an implantable medical device comprising: a housing; at least one module enclosed within the housing and configured to at least one of generate an electrical stimulation therapy for delivery to a patient or monitor a physiological parameter of the patient; one or more feedthroughs extending through the housing; a header assembly including one or more electrical connectors electrically coupled to the module via the feedthroughs; and a preformed gasket compressed between the housing and the header assembly forming a seal to electrically isolate the feedthroughs from an external environment.
Abstract:
Structures and methods relating to electrodes for incorporation into a feedthrough with a profile adapted for subcutaneous sensing of physiologic and cardiac signals. Electrode assemblies are adapted for integration with feedthroughs and provide reliable insulation from the implantable medical device housing. Various structures and manufacturing processes are implemented to provide a large sensing surface with a low profile. The subcutaneous sensing electrode assembly can provide a leadless sensing system and further enhances installation and follow-up procedures.
Abstract:
In general, the invention is directed to an implantable medical device assembly having a more space-efficient housing and components, as well as processes for assembling the implantable medical device with reduced assembly cost and less complexity. The implantable medical device may incorporate a battery, capacitor, circuit assembly, feedthrough assembly, and interconnect assembly with respective electrical terminals. This configuration permits the use of automated electronic module assembly techniques such as parallel gap or ribbon bond welding to electrically connect the terminals. A feedthrough assembly may present a set of terminals adjacent a corresponding set of circuit terminals, also enabling the use of automated welding techniques.
Abstract:
A multilayered feedthrough for an implantable medical device includes a substrate having a first edge, a second edge, and a substrate length. A plurality of traces is formed on the substrate and extends along the substrate length. The plurality of traces extends to the first and second edges of the substrate. An insulator layer is formed on the substrate and the plurality of traces. A ground plane layer is formed on the insulator layer.
Abstract:
A telemetry antenna for an implantable medical device includes one or more portions having a non-linear configuration. In some embodiments, the non-linear configuration provides an antenna having a greater antenna length than the linear lengthwise dimension of the antenna structure. In some embodiments, the non-linear configuration is a serpentine pattern.
Abstract:
An implantable medical device that includes an enclosure, an electrical module for the desired stimulation, sensing and communications functions, a power source, an air-core antenna, and supporting structures therefore. The antenna includes a quarter-elliptical shape that maximizes the antenna area to facilitate transmission of electromagnetic waves through the enclosure. A support structure is provided so that the antenna, the module and the battery self-align with each other and the enclosure. The support structure contains contacts to facilitate electrical connection of the antenna to the module and positions the module so that contacts thereon are in close proximity in plan and elevation to external electrical feed-throughs in the housing and the antenna contacts on the support structure. The support structure positions the antenna between the module and the housing, separated therefrom by a predetermined minimum distance to facilitate efficient coupling of electromagnetic waves to and/or from the antenna.
Abstract:
An implantable medical device includes a housing forming an internal cavity, the housing defining a profile with a height and a width and further defining a thickness perpendicular to its profile. The thickness of the housing is shorter than both the height and the width of the profile of the housing. The implantable medical device further includes at least one battery within the internal cavity, at least one capacitor adjacent the battery within the internal cavity, the capacitor and the battery being located along a common plane within the internal cavity, and circuitry within the internal cavity. The circuitry extends over both the battery and the capacitor within the internal cavity such that the circuitry is in a stacked arrangement relative to the battery and the capacitor.
Abstract:
A medical device is electrically connected to a biological tissue for transmission of an electrical signal between the medical device and the biological tissue. The medical device includes a housing assembly and a control circuit assembly that controls the electrical signal. The control circuit assembly is enclosed within the housing assembly, and the control circuit assembly includes an electrically conductive terminal. The device further includes an electrical component at least partially enclosed within the housing assembly. The electrical component has a connecting member that electrically connects the electrical component to the control circuit assembly. The connecting member is resistance welded and bonded directly to the electrically conductive terminal of the control circuit assembly.
Abstract:
Structures and methods relating to electrodes for incorporation into a feedthrough with a profile adapted for subcutaneous sensing of physiologic and cardiac signals. Electrode assemblies are adapted for integration with feedthroughs and provide reliable insulation from the implantable medical device housing. Various structures and manufacturing processes are implemented to provide a large sensing surface with a low profile. The subcutaneous sensing electrode assembly can provide a leadless sensing system and further enhances installation and follow-up procedures.