摘要:
A propulsion system is disclosed comprising a glycidyl azide polymer (GAP)olid fuel generator (SFGG) that produces fuel-rich hot gases which are combusted in a combustion zone of a combustion chamber of a solid fuel ducted rocket. A basic embodiment comprises an airbreathing engine wherein a ducted member scoops air in from the atmosphere for hypergolic reaction with the fuel-rich hot gases for propulsion during a sustain stage of a flight. An augmentation of the basic embodiment is achieved by combusting the fuel-rich GAP SFGG effluent with inhibited red fuming nitric acid (IRFNA) gel oxidizer to produce higher thrust during the boost and dash stages of a flight. During the high thrust stages, the air ducts of the ducted member are closed and IRFNA gel is injected into the combustion chamber to react with the fuel-rich hot gases from the GAP SFGG. The resulting higher pressure in the combustion chamber gives the missile a correspondingly greater thrust than during the lower pressure airbreathing sustain stage of flight.
摘要:
Sticky high water content gelled fire extinguisher compositions hold the antage of providing a high water content, slightly viscous (sticky) gel with flow properties similar to water. The ability of this material to stick to burning surfaces is what sets it apart from water extinguishers. Not only are fires extinguished, but also surfaces are cooled by the sticky gel as the water evaporates. The basic gelled fire extinguisher composition is comprised of about 88 weight percent water and about 12 weight percent of a 7 nanometer particle size silicon dioxide gellant. The silicon dioxide gellant is available as EH5 tradename by Cabot for this silicon dioxide gellant. Other ingredients such as dispersants, wetting agents and flame retardants can be used as additives in combination with the gelling agent. The actual gel system is inexpensive, made from readily available ingredients and easily prepared.
摘要:
The addition of silicon (Si) powder from about 0.40 to 6.00 weight percento ammonium nitrate (AN) propellant formulations as a fuel source results in a substantial increase in performance specific impulse (Isp). Theoretical Isp of AN propellant can be enhanced to levels approaching conventional in-service propellant formulations containing much more hazardous ingredients. Using inert or energetic polymer binders, AN propellant formulations are possible that will meet the performance requirements of most tactical missile systems when silicon is used as a fuel additive. Silicon powder when used to replace elemental carbon in most formulations has two major advantages: (1) an increase in theoretical Isp and (2) an improved propellant combustion efficiency by increasing propellant burning temperature. An improvement in propellant burning properties are also expected. The adjustment of weight percent ammonium nitrate in the AN propellant formulation is made as the silicon powder is adjusted over the range of 0.40 weight percent to 6.00 to achieve the preferred results. Formulations are mixed, cast and cured by techniques and methods that are commonly used in the industry and that are known by personnel skilled in the art of propellant formulating.
摘要:
Elemental silicon is a solid high energy material which provides an advane when added to gel, hybrid, and ducted rocket fuels by increasing both specific impulse, lsp, and density specific impulse, .rho.*lsp. The quantity added depends on the specific applications for which the formulation will be used. The usual concentration ranges from about 0.5% to about 70% by weight. The important parameters to consider during formulation are particle size, concentration, combustion efficiency, physical properties, and plume signature. Comparisons for 50% solid fuel loading in a gel bipropulsion system predicts a maximum lsp of 286 lbf.s/lbm as compared to 267 lbf.s/lbm for carbon--a 7% increase. The .rho.*lsp produced by silicon is 14.5 lbf.s/cubic inch as compared to 13.7 lbf.s/cubic inch produced by carbon--a 7% increase. A 25% solid loading in solid fuel-gas generators for the hybrid rocket produced a maximum lsp of 278 lbf.s/lbm as compared to 267 lbf.s/lbm produced by carbon--a 4% increase. The .rho.*lsp produced by silicon is 14.8 lbf.s/cubic inch as compared to 14.1 lbf.s/cubic inch produced by carbon--a 5% increase. Another advantage for silicon loaded gel fuels is the large "plateau" in the performance versus oxygen/fuel curves, and, resulting in a less stringent oxidizer-to-fuel ratio (O/F) control in an operational system.
摘要:
A gel/solid bipropellant propulsion system employs fuel-rich combustion gs from a solid gas generator and an oxidizer gel in a highly efficient combustion chamber wherein the fuel-rich combustion gases and the oxidizer gel are each metered through a vortex injector into a combustion chamber to produce a hypergolic reaction. The solid gas generator (SSG) has a preferred composition of glycidly azide polymer (GAP). The GAP SSG is composed of GAP diol and/or triol polymerized with a di-or tri-function isocyanate, such as isophorone diisocyanate. The gel/solid bipropellant propulsion system comprises the SSG in combination with an oxidizer storage/extrusion vessel system, a combustion chamber system, and a system controller which controls initial ignition of the SSG to produce fuel rich combustion gas which pressurize the system. The system controller monitors pressures and flow rates of fuel and gel oxidizer. System shut-down is achieved by closing valves in fuel-rich combustion gases supply line, gel oxidizer supply line, and a pressurization line to gel oxidizer storage/extrusion vessel. A blow-down line is opened to de-pressurize the SSG container which extinguishes the SSG. When start up is desired, a reignition shut-off valve is reopened which permits the injection of the gel oxidizer from the line retained under pressure and achieves reignition of the SSG.
摘要翻译:凝胶/固体双组元推进剂推进系统在高效燃烧室中使用来自固体气体发生器和氧化剂凝胶的富燃料燃烧气体,其中富燃料燃烧气体和氧化剂凝胶各自通过涡流喷射器计量到燃烧室 以产生高反应。 固体气体发生器(SSG)具有优选的缩水甘油叠氮化物聚合物(GAP)的组成。 GAP SSG由与二异构体或三官能异氰酸酯如异佛尔酮二异氰酸酯聚合的GAP二醇和/或三醇组成。 凝胶/固体双组分推进剂推进系统包括SSG与氧化剂储存/挤出容器系统,燃烧室系统和系统控制器,其控制SSG的初始点火以产生对系统加压的富燃料燃烧气体。 系统控制器监测燃料和凝胶氧化剂的压力和流量。 通过关闭富含燃料的燃烧气体供应管线,凝胶氧化剂供应管线和用于凝胶氧化剂储存/挤出容器的加压管线来关闭阀门来实现关闭系统。 打开排气管线以对SSG容器进行减压,从而消除SSG。 当需要启动时,重新打开重新启动截止阀,这允许凝胶氧化剂从压力下保持的管线注入并实现SSG的重新点燃。
摘要:
A nitrate or nitroparaffin-base liquid exlosive composition having a small critical diameter yet which is essentially free of particulate metals such as may render such compositions unduly brisant or susceptible to decomposition, and which is consistent with the safety requirements of geological fracturing, including an inert solid ballistic modifier having a sonic velocity substantially different from that of the explosive material in the composition and an average particle size of less than 10 microns, forming from about 5% to 20% by weight of the composition.