Solid fuel ducted rocket with gel-oxidizer augmentation propulsion
    1.
    发明授权
    Solid fuel ducted rocket with gel-oxidizer augmentation propulsion 失效
    固体燃料管道火箭与凝胶氧化剂增强推进

    公开(公告)号:US5152136A

    公开(公告)日:1992-10-06

    申请号:US741296

    申请日:1991-08-05

    IPC分类号: F02K7/18 F02K9/08 F02K9/72

    CPC分类号: F02K7/18 F02K9/08 F02K9/72

    摘要: A propulsion system is disclosed comprising a glycidyl azide polymer (GAP)olid fuel generator (SFGG) that produces fuel-rich hot gases which are combusted in a combustion zone of a combustion chamber of a solid fuel ducted rocket. A basic embodiment comprises an airbreathing engine wherein a ducted member scoops air in from the atmosphere for hypergolic reaction with the fuel-rich hot gases for propulsion during a sustain stage of a flight. An augmentation of the basic embodiment is achieved by combusting the fuel-rich GAP SFGG effluent with inhibited red fuming nitric acid (IRFNA) gel oxidizer to produce higher thrust during the boost and dash stages of a flight. During the high thrust stages, the air ducts of the ducted member are closed and IRFNA gel is injected into the combustion chamber to react with the fuel-rich hot gases from the GAP SFGG. The resulting higher pressure in the combustion chamber gives the missile a correspondingly greater thrust than during the lower pressure airbreathing sustain stage of flight.

    摘要翻译: 公开了一种推进系统,其包括在固体燃料管道式火箭的燃烧室的燃烧区中燃烧的富含燃料的热气体的缩水甘油基叠氮化物聚合物(GAP)固体燃料发生器(SFGG)。 一个基本实施例包括一个呼吸引擎,其中一个管道构件在飞行的持续阶段期间,从大气中舀出空气进行高压反应,并与富含燃料的热气进行推进。 基本实施方案的增加通过使富含燃料的GAP SFGG流出物与抑制的红色发烟硝酸(IRFNA)凝胶氧化剂一起燃烧以在飞行的升压和冲击阶段期间产生更高的推力来实现。 在高推力阶段期间,管道构件的空气管道被关闭,并且IRFNA凝胶被注入到燃烧室中以与来自GAP SFGG的富燃料热气体反应。 燃烧室中产生的较高压力使得导弹相对于在较低压力的空气呼吸维持阶段期间相应地具有更大的推力。

    Sticky high water content gels for extinguishers
    2.
    发明授权
    Sticky high water content gels for extinguishers 失效
    粘性高含水量的灭火器凝胶

    公开(公告)号:US6001270A

    公开(公告)日:1999-12-14

    申请号:US039503

    申请日:1998-03-16

    IPC分类号: A62D1/00 A62D1/08 B01J13/00

    摘要: Sticky high water content gelled fire extinguisher compositions hold the antage of providing a high water content, slightly viscous (sticky) gel with flow properties similar to water. The ability of this material to stick to burning surfaces is what sets it apart from water extinguishers. Not only are fires extinguished, but also surfaces are cooled by the sticky gel as the water evaporates. The basic gelled fire extinguisher composition is comprised of about 88 weight percent water and about 12 weight percent of a 7 nanometer particle size silicon dioxide gellant. The silicon dioxide gellant is available as EH5 tradename by Cabot for this silicon dioxide gellant. Other ingredients such as dispersants, wetting agents and flame retardants can be used as additives in combination with the gelling agent. The actual gel system is inexpensive, made from readily available ingredients and easily prepared.

    摘要翻译: 粘性高含水量的凝胶灭火器组合物具有提供高水含量,稍粘性(粘性)凝胶的优点,其流动性质类似于水。 这种材料粘在燃烧表面上的能力是将其与灭火器分开。 火不仅灭火,而且随着水蒸发,表面也被粘性凝胶冷却。 基本的凝胶灭火器组合物由约88重量%的水和约12重量%的7纳米颗粒尺寸的二氧化硅胶凝剂组成。 二氧化硅胶凝剂可作为Cabot的EH5商品名称提供给该二氧化硅凝胶剂。 其它成分如分散剂,润湿剂和阻燃剂可以与胶凝剂组合使用作为添加剂。 实际的凝胶体系是廉价的,由容易获得的成分制成,容易制备。

    Silicon as high performance fuel additive for ammonium nitrate
propellant formulations
    3.
    发明授权
    Silicon as high performance fuel additive for ammonium nitrate propellant formulations 失效
    硅作为硝酸铵推进剂配方的高性能燃料添加剂

    公开(公告)号:US5500061A

    公开(公告)日:1996-03-19

    申请号:US215748

    申请日:1994-03-21

    IPC分类号: C06B33/04 C06B45/10

    CPC分类号: C06B45/105 C06B33/04

    摘要: The addition of silicon (Si) powder from about 0.40 to 6.00 weight percento ammonium nitrate (AN) propellant formulations as a fuel source results in a substantial increase in performance specific impulse (Isp). Theoretical Isp of AN propellant can be enhanced to levels approaching conventional in-service propellant formulations containing much more hazardous ingredients. Using inert or energetic polymer binders, AN propellant formulations are possible that will meet the performance requirements of most tactical missile systems when silicon is used as a fuel additive. Silicon powder when used to replace elemental carbon in most formulations has two major advantages: (1) an increase in theoretical Isp and (2) an improved propellant combustion efficiency by increasing propellant burning temperature. An improvement in propellant burning properties are also expected. The adjustment of weight percent ammonium nitrate in the AN propellant formulation is made as the silicon powder is adjusted over the range of 0.40 weight percent to 6.00 to achieve the preferred results. Formulations are mixed, cast and cured by techniques and methods that are commonly used in the industry and that are known by personnel skilled in the art of propellant formulating.

    摘要翻译: 将硝酸铵(AN)推进剂配方作为燃料源加入约0.40至6.00重量%的硅(Si)粉末导致性能比冲击(Isp)的显着增加。 AN推进剂的理论Isp可以提高到接近含有更多有害成分的常规在役推进剂制剂的水平。 使用惰性或高能聚合物粘合剂时,AN推进剂配方是可以满足大多数战术导弹系统的性能要求,当硅用作燃料添加剂时。 在大多数制剂中用于替代元素碳的硅粉具有两个主要优点:(1)理论Isp的增加和(2)通过增加推进剂燃烧温度改善推进剂燃烧效率。 推测剂燃烧性能也有所改善。 AN推进剂配方中硝酸铵重量百分比的调整是由硅粉末调节至0.40重量%至6.00的范围,以达到优选的结果。 制剂通过技术和方法混合,浇铸和固化,这些技术和方法在工业中通常使用,并且是推进剂配制领域的技术人员已知的。

    Silicon as a high energy additive for fuel gels and solid fuel-gas
generators for propulsion systems
    4.
    发明授权
    Silicon as a high energy additive for fuel gels and solid fuel-gas generators for propulsion systems 失效
    硅作为燃料凝胶的高能添加剂和用于推进系统的固体燃料 - 气体发生器

    公开(公告)号:US5438824A

    公开(公告)日:1995-08-08

    申请号:US215747

    申请日:1994-03-21

    CPC分类号: F02K9/70 C06B27/00 C06B47/08

    摘要: Elemental silicon is a solid high energy material which provides an advane when added to gel, hybrid, and ducted rocket fuels by increasing both specific impulse, lsp, and density specific impulse, .rho.*lsp. The quantity added depends on the specific applications for which the formulation will be used. The usual concentration ranges from about 0.5% to about 70% by weight. The important parameters to consider during formulation are particle size, concentration, combustion efficiency, physical properties, and plume signature. Comparisons for 50% solid fuel loading in a gel bipropulsion system predicts a maximum lsp of 286 lbf.s/lbm as compared to 267 lbf.s/lbm for carbon--a 7% increase. The .rho.*lsp produced by silicon is 14.5 lbf.s/cubic inch as compared to 13.7 lbf.s/cubic inch produced by carbon--a 7% increase. A 25% solid loading in solid fuel-gas generators for the hybrid rocket produced a maximum lsp of 278 lbf.s/lbm as compared to 267 lbf.s/lbm produced by carbon--a 4% increase. The .rho.*lsp produced by silicon is 14.8 lbf.s/cubic inch as compared to 14.1 lbf.s/cubic inch produced by carbon--a 5% increase. Another advantage for silicon loaded gel fuels is the large "plateau" in the performance versus oxygen/fuel curves, and, resulting in a less stringent oxidizer-to-fuel ratio (O/F) control in an operational system.

    摘要翻译: 元素硅是一种固体高能材料,当通过增加比脉冲,lsp和密度比冲量rho * lsp而添加到凝胶,混合物和管道火箭燃料时提供了优势。 添加量取决于使用配方的具体应用。 通常的浓度范围为约0.5%至约70%重量。 制剂中要考虑的重要参数是粒度,浓度,燃烧效率,物理性质和羽流签名。 凝胶双组分萃取系统中50%固体燃料负荷的比较预测最大lsp为286 lbf.s / lbm,而碳为267 lbf.s / lbm,增加7%。 由硅产生的rho * lsp为14.5lbf.s /立方英寸,而由碳增加7%的13.7磅/吋英寸。 混合火箭固体燃料 - 气体发生器的25%固体负载产生了278 lbf.s / lbm的最大lsp,而碳产生的267 lbf.s / lbm增加了4%。 由硅制成的rho * lsp为14.8 lbf.s /立方英寸,而碳 - 增加5%则为14.1 lbf.s /立方英寸。 硅胶凝胶燃料的另一个优点是在性能与氧/燃料曲线之间的大的“平台”,并且导致在操作系统中较不严格的氧化剂 - 燃料比(O / F)控制。

    Gel/solid bipropellant propulsion system with energy management
capability
    5.
    发明授权
    Gel/solid bipropellant propulsion system with energy management capability 失效
    具有能量管理能力的凝胶/固体双组分推进剂推进系统

    公开(公告)号:US5133183A

    公开(公告)日:1992-07-28

    申请号:US662851

    申请日:1991-03-01

    摘要: A gel/solid bipropellant propulsion system employs fuel-rich combustion gs from a solid gas generator and an oxidizer gel in a highly efficient combustion chamber wherein the fuel-rich combustion gases and the oxidizer gel are each metered through a vortex injector into a combustion chamber to produce a hypergolic reaction. The solid gas generator (SSG) has a preferred composition of glycidly azide polymer (GAP). The GAP SSG is composed of GAP diol and/or triol polymerized with a di-or tri-function isocyanate, such as isophorone diisocyanate. The gel/solid bipropellant propulsion system comprises the SSG in combination with an oxidizer storage/extrusion vessel system, a combustion chamber system, and a system controller which controls initial ignition of the SSG to produce fuel rich combustion gas which pressurize the system. The system controller monitors pressures and flow rates of fuel and gel oxidizer. System shut-down is achieved by closing valves in fuel-rich combustion gases supply line, gel oxidizer supply line, and a pressurization line to gel oxidizer storage/extrusion vessel. A blow-down line is opened to de-pressurize the SSG container which extinguishes the SSG. When start up is desired, a reignition shut-off valve is reopened which permits the injection of the gel oxidizer from the line retained under pressure and achieves reignition of the SSG.

    摘要翻译: 凝胶/固体双组元推进剂推进系统在高效燃烧室中使用来自固体气体发生器和氧化剂凝胶的富燃料燃烧气体,其中富燃料燃烧气体和氧化剂凝胶各自通过涡流喷射器计量到燃烧室 以产生高反应。 固体气体发生器(SSG)具有优选的缩水甘油叠氮化物聚合物(GAP)的组成。 GAP SSG由与二异构体或三官能异氰酸酯如异佛尔酮二异氰酸酯聚合的GAP二醇和/或三醇组成。 凝胶/固体双组分推进剂推进系统包括SSG与氧化剂储存/挤出容器系统,燃烧室系统和系统控制器,其控制SSG的初始点火以产生对系统加压的富燃料燃烧气体。 系统控制器监测燃料和凝胶氧化剂的压力和流量。 通过关闭富含燃料的燃烧气体供应管线,凝胶氧化剂供应管线和用于凝胶氧化剂储存/挤出容器的加压管线来关闭阀门来实现关闭系统。 打开排气管线以对SSG容器进行减压,从而消除SSG。 当需要启动时,重新打开重新启动截止阀,这允许凝胶氧化剂从压力下保持的管线注入并实现SSG的重新点燃。

    Well-fracturing explosive composition
    6.
    发明授权
    Well-fracturing explosive composition 失效
    破裂爆炸组合物

    公开(公告)号:US4038112A

    公开(公告)日:1977-07-26

    申请号:US576644

    申请日:1975-05-12

    申请人: Leo K. Asaoka

    发明人: Leo K. Asaoka

    摘要: A nitrate or nitroparaffin-base liquid exlosive composition having a small critical diameter yet which is essentially free of particulate metals such as may render such compositions unduly brisant or susceptible to decomposition, and which is consistent with the safety requirements of geological fracturing, including an inert solid ballistic modifier having a sonic velocity substantially different from that of the explosive material in the composition and an average particle size of less than 10 microns, forming from about 5% to 20% by weight of the composition.