Abstract:
An apparatus and method are provided for controlling a wireless feeder network used to couple access base stations of an access network with a communications network. The wireless feeder network comprises a plurality of feeder base stations coupled to the communications network and a plurality of feeder terminals coupled to associated access base stations. Each feeder terminal has a feeder link with a feeder base station, and the feeder links are established over a wireless resource comprising a plurality of resource blocks. Sounding data obtained from the wireless feeder network is used to compute an initial global schedule to allocate to each feeder link at least one resource block, and the global schedule is distributed whereafter the wireless feeder network operates in accordance with the currently distributed global schedule to pass traffic between the communications network and the access base stations. Using traffic reports received during use, an evolutionary algorithm is applied to modify the global schedule, with the resultant updated global schedule then being distributed for use. This enables the allocation of resource blocks to individual feeder links to be varied over time taking account of traffic within the wireless feeder network, thereby improving spectral efficiency.
Abstract:
A point to multipoint device for use in a wireless network operates a sequence of variable duration communication channels, allocatable to telecommunications units. A training sequence indication and a repetition rate indication are stored indicating a training sequence and repetition rate for the training sequence in the sequence of communication channels associated with the point to multipoint device. An interface receives a synchronization signal issued to all point to multipoint devices in the wireless network, and uses it to determine a time for a first occurrence of the training sequence to occur. Communication channel control logic causes control data to be transmitted to the telecommunications units identifying the sequence of channels, the training sequence indication and the repetition rate. Beamforming logic determines beamforming weights used to produce a reception beam at an antenna array.
Abstract:
The present invention provides an interference controller and method for limiting in one cell the effect of interference generated by other cells of a wireless telecommunications system, each cell of the wireless telecommunications system having a central terminal and a plurality of subscriber terminals, communication between a central terminal and a subscriber terminal being arranged to occur over a wireless link, and a plurality of code division multiplexed channels being provided within a single frequency channel to enable data items pertaining to a plurality of wireless links to be transmitted simultaneously within different code division multiplexed channels of said single frequency channel. The interference controller comprises an analyser for comparing with predetermined criteria parameters within the cell indicative of whether the code division multiplexed channels are subject to interference from signals generated by said other cells; and a channel controller, responsive to the analyser, to selectively prevent code division multiplexed channels from being used in order to reduce the effect of the interference from said other cells. In preferred embodiments, the interference controller is provided within a central terminal of at least one cell of the wireless telecommunications system.
Abstract:
A method and system are provided for determining modulation control information and a reference signal design to be used by a transmitter node when generating a transmit signal to transmit from a transmitter (logical antenna) of the transmitter node over a channel of a wireless link to a recipient node. The modulation control information is used by the transmitter node to convert source data into an information bearing signal, and the information bearing signal is combined with a reference signal conforming to the reference signal design in order to produce the transmit signal. The method comprises (a) selecting a candidate reference signal design from a plurality of candidate reference signal designs, (b) determining channel state information for the channel, (c) determining, from the channel state information, signal to noise ratio information for said channel, and (d) for each of a plurality of candidate modulation control information, using the signal to noise ratio information to determine a quality indication for said channel. Steps (a) to (d) are then repeated for each candidate reference signal design in said plurality. Thereafter a winning quality indication is selected from the determined quality indications, and the combination of candidate reference signal design and candidate modulation control information associated with the winning quality indication is then output to the transmitting node. By such an approach, quality indications can be established for each combination of possible reference signal design and possible modulation control information, and hence not only is the inherent channel estimation accuracy achievable using each possible reference signal design considered, but also the data transmission efficiency and robustness to channel effects of each possible modulation control information is also taken into account.
Abstract:
A wireless feeder network comprises feeder base stations coupled to the communications network and feeder terminals coupled to associated access base stations of the access network. A group of wireless network components form elements of a feeder cluster and the elements of the feeder cluster are connected by an additional communications resource configured to be operated in parallel with the wireless resource of the wireless feeder network. Both a primary and secondary element of the feeder cluster seek to decode at least one resource block allocated to the primary element for reception of data. Information derived from the secondary decoded data is transmitted from the secondary element to the primary element via the additional communications resource. The primary element then performs a revised decoding process additionally using the information received from said secondary element to improve its own decode probability.
Abstract:
An apparatus and method are provided for controlling a wireless feeder network used to couple access base stations of an access network with a communications network. The wireless feeder network connects base stations coupled to the communications network and feeder terminals coupled to associated access base stations. Each feeder terminal has a feeder link with a feeder base station. The method includes allocating resource blocks for the feeder base stations and feeder terminals to establish the feeder links. The resource blocks are allocated between a centrally administered schedule and at least one feeder base station administered schedule. Network traffic being carried by the feeder links is monitored to determine at least one characteristic. The resource blocks are reallocated between the centrally administered schedule and the at least one feeder base station administered schedule in dependence on the at least one characteristic of the network traffic.
Abstract:
The present invention relates to a telecommunications system and method for connecting to a network and for routing data of a plurality of different data types between the network and subscriber terminals of the telecommunications system. The subscriber terminals are connectable to a central terminal of the telecommunications system via a transmission medium, the telecommunications system providing a number of communication channels arranged to utilize the transmission medium for transmission of data between the central terminal and the subscriber terminals. The telecommunications system comprises a transmitter having first transmission processing logic for employing a first transport mechanism to transmit data and second transmission processing logic for employing a second transport mechanism to transmit data. A switching element is then provided for routing data for transmission to either the first or second transmission processing logic dependent on first predetermined criteria, the first predetermined criteria comprising at least the data type of the data for transmission. In addition, a resource allocation logic is provided for determining based on second predetermined criteria which of the communication channels to allocate for use by the first transmission processing logic, and which of the communication channels to allocate for use by the second transmission processing logic. This approach provides a very flexible transmission mechanism for improving the efficiency of transmission of data through the telecommunications system.
Abstract:
The present invention provides a subscriber terminal for communicating over a wireless link with a central terminal of a wireless telecommunications system, the subscriber terminal comprising a first signal processing unit associated with an antenna to transmit and receive signals over the wireless link at first frequencies within an operating frequency band. The first signal processing unit comprises a frequency converter for converting signals between said first frequencies and a second frequency. Further, a second signal processing unit is provided remote from the first signal processing unit and associated with an item of telecommunications equipment to pass signals between said item of telecommunications equipment and the first signal processing unit. The second signal processing unit is formed from signal processing circuitry which is independent of the operating frequency band, the signals being passed between the first signal processing unit and the second signal processing unit at the second frequency via a connection medium connecting the first and second signal processing units. Given this approach, the second signal processing unit can then be formed from signal processing circuitry which is independent of the operating frequency band.
Abstract:
Encryption apparatus mainly intended for encrypting speech signals samples a signal to be encrypted at two differing rates, and reads the sampled signal into storage means at one of said rates and reads it out of said storage at the other of said rates so that the signal is alternately dispersed upwardly and downwardly with each pair of upward and downward dispersion representing a frame. To improve security the apparatus further generates a pseudo random binary number, defines a superframe structure consisting of a predetermined number of said frames, and sets the starting point of each individual superframe as an upward or a downward dispersion in dependence on the next digit of said pseudo-random binary number.
Abstract:
A method and system are provided for determining modulation control information and a reference signal design to be used by a transmitter node when generating a transmit signal to transmit from a transmitter (logical antenna) of the transmitter node over a channel of a wireless link to a recipient node. The modulation control information is used by the transmitter node to convert source data into an information bearing signal, and the information bearing signal is combined with a reference signal conforming to the reference signal design in order to produce the transmit signal. The method comprises (a) selecting a candidate reference signal design from a plurality of candidate reference signal designs, (b) determining channel state information for the channel, (c) determining, from the channel state information, signal to noise ratio information for said channel, and (d) for each of a plurality of candidate modulation control information, using the signal to noise ratio information to determine a quality indication for said channel. Steps (a) to (d) are then repeated for each candidate reference signal design in said plurality. Thereafter a winning quality indication is selected from the determined quality indications, and the combination of candidate reference signal design and candidate modulation control information associated with the winning quality indication is then output to the transmitting node. By such an approach, quality indications can be established for each combination of possible reference signal design and possible modulation control information, and hence not only is the inherent channel estimation accuracy achievable using each possible reference signal design considered, but also the data transmission efficiency and robustness to channel effects of each possible modulation control information is also taken into account.