摘要:
An igniter composition is provided including metal fuel particles having a predetermined average diameter and metallic oxide oxidizer particles having a predetermined average diameter. The metal fuel particles are mixed substantially homogeneously with the metallic oxide oxidizer particles and, upon initiation of the igniter composition, actively participate in an exothermic reaction with the metallic oxide oxidizer particles. Also provided are methods and devices containing the igniter composition.
摘要:
The invention concerns copper azide containing carbon nanotubes. The invention also concerns methods of producing such nanotubes by placing CuO nanoparticles within carbon nanotubes to produce CuO-containing carbon nanotubes, contacting CuO-containing carbon nanotubes with hydrogen to produce reduced nanotubes; and contacting the reduced nanotubes with hydrazoic acid to produce copper azide containing carbon nanotubes.
摘要:
The invention concerns copper azide containing carbon nanotubes. The invention also concerns methods of producing such nanotubes by placing CuO nanoparticles within carbon nanotubes to produce CuO-containing carbon nanotubes, contacting CuO-containing carbon nanotubes with hydrogen to produce reduced nanotubes; and contacting the reduced nanotubes with hydrazoic acid to produce copper azide containing carbon nanotubes.
摘要:
The present invention relates generally to methods of making carbon nanotubes, and more particularly to the interaction of single wall carbon nanotubes with hydrazoic acid to introduce energetic azide groups into the nanotubes to form activated carbon nanotubes.
摘要:
A method is disclosed for preparing metastable nanoenergetic composites (MNC) and for wet loading those MNCs into percussion primer cups. The method involves dispersing nanosize reactants in an inert liquid or, alternatively, making a nanosize reactant surface modification for improvement of reactant's chemical inertness towards water, followed by application of additives supporting a solid reactant particle dispersion in water or water solution prior to mixing. After mixing of the reactants, one maintains the presence of liquid water together within an energetic material in order to enhance safety during pre-loading of the primer mixture into the primer cups and during the final drying.
摘要:
The present invention relates generally to carbon nanotubes, and more particularly to the interaction of single wall carbon nanotubes with hydrazoic acid to introduce energetic azide groups into the nanotubes to form activated carbon nanotubes.