Abstract:
Aspects of the invention provide a transport system powered by short block Linear Synchronous Motors (LSMs). The use of short blocks allows vehicles to move under precise control even when they are in close proximity to each other. The design allows the vehicles to be propelled and guided while negotiating sharp turns and negotiating merge and diverge switches. A coreless LSM can be used to create propulsive force without attractive force so as to allow a relatively high drag vehicle suspension, such as a vehicle sliding on a smooth surface.
Abstract:
Aspects of the invention provide a transport system powered by short block Linear Synchronous Motors (LSMs). The use of short blocks allows vehicles to move under precise control even when they are in close proximity to each other. The design allows the vehicles to be propelled and guided while negotiating sharp turns and negotiating merge and diverge switches. A coreless LSM can be used to create propulsive force without attractive force so as to allow a relatively high drag vehicle suspension, such as a vehicle sliding on a smooth surface.
Abstract:
The invention provides in some aspects a transport system comprising a guideway with a plurality of propulsion coils disposed along a region in which one or more vehicles are to be propelled. One or more vehicles are disposed on the guideway, each including a magnetic flux source. The guideway has one or more running surfaces that support the vehicles and along which they roll or slide. Each vehicle can have a septum portion of narrowed cross-section that is coupled to one or more body portions of the vehicle. The guideway includes a diverge region that has a flipper and an extension of the running surface at a vertex of the diverge. The flipper initiates switching of vehicle direction at a diverge by exerting a laterally directed force thereon. The extension continues switching of vehicle direction at the diverge by contacting the septum. Still other aspects of the invention provide a transport system, e.g., as described above, that includes a merge region with a flipper and a broadened region of the running surface. The flipper applies a lateral force to the vehicle to alter an angle thereof as the vehicle enters the merge region, and the broadened region continues the merge by contacting the septum of the vehicle, thereby, providing further guidance or channeling for the merge. The flipper, which can be equipped for full or partial deployment, is partially deployed in order to effect alteration of the vehicle angle as the vehicle enters the merge.
Abstract:
A mover for a linear motor system includes a magnet subassembly. The mover includes a magnetic structure disposed on at least one side of the magnet subassembly and creating with the magnetic subassembly a resultant magnetic field. The magnetic structure being centered on a detected center of the resultant magnetic field. The mover includes a body structure mounted on or with reference to the magnetic structure to position a physical center of the body structure at approximately the detected center of the resultant magnetic field.
Abstract:
A method and system for characterizing performance of a mover operating in a linear drive system is disclosed, where the linear drive system includes multiple track segments and where each track segment includes a segment controller. Each segment controller is configured to obtain an in-system frequency response for a mover present along the track segment. An injection sequence is generated within the segment controller, where the injection sequence includes harmonic content across a range of frequencies to be evaluated. The injection sequence is added to a control module within the segment controller, and the segment controller samples and records motion of the mover in response to the injection sequence. A frequency response corresponding to the recorded motion of the mover resulting from the injection sequence is obtained, and may be utilized to identify a resonant operating point or an undesirable level of the harmonic content present in the sampled data.
Abstract:
Aspects of the invention provide a transport system powered by short block Linear Synchronous Motors (LSMs). The use of short blocks allows vehicles to move under precise control even when they are in close proximity to each other. The design allows the vehicles to be propelled and guided while negotiating sharp turns and negotiating merge and diverge switches. A coreless LSM can be used to create propulsive force without attractive force so as to allow a relatively high drag vehicle suspension, such as a vehicle sliding on a smooth surface.
Abstract:
The invention provides in some aspects a transport system comprising a guideway with a plurality of propulsion coils disposed along a region in which one or more vehicles are to be propelled. One or more vehicles are disposed on the guideway, each including a magnetic flux source. The guideway has one or more running surfaces that support the vehicles and along which they roll or slide. Each vehicle can have a septum portion of narrowed cross-section that is coupled to one or more body portions of the vehicle. The guideway includes a diverge region that has a flipper and an extension of the running surface at a vertex of the diverge. The flipper initiates switching of vehicle direction at a diverge by exerting a laterally directed force thereon. The extension continues switching of vehicle direction at the diverge by contacting the septum. Still other aspects of the invention provide a transport system, e.g., as described above, that includes a merge region with a flipper and a broadened region of the running surface. The flipper applies a lateral force to the vehicle to alter an angle thereof as the vehicle enters the merge region, and the broadened region continues the merge by contacting the septum of the vehicle, thereby, providing further guidance or channeling for the merge. The flipper, which can be equipped for full or partial deployment, is partially deployed in order to effect alteration of the vehicle angle as the vehicle enters the merge.
Abstract:
The invention provides in some aspects a transport system comprising a guideway having a plurality of regions in which one or more vehicles are propelled, where each such vehicle includes a magnet. Disposed along each region are a plurality of propulsion coils, each comprising one or more turns that are disposed about a common axis, such that the respective common axes of the plurality of coils in that region are (i) substantially aligned with one another, and (ii) orthogonal to a direction in which the vehicles are to be propelled in that region. The plurality of coils of at least one such region are disposed on opposing sides of the magnets of vehicles being propelled along that region so as to exert a propulsive force of substance on those magnets. In at least one other region, the plurality of coils disposed on only a single side of the magnets of vehicles being propelled in that region exert a propulsive force of substance thereon—regardless of whether the plurality of coils in that region are disposed on a single or multiple (e.g., opposing sides) of those magnets.
Abstract:
A method and system for detecting and reporting component failures in a linear drive system may identify failed position sensors, failed position magnets, and failed drive coils in the linear drive system. As a mover travels along a track segment in the linear drive system, signals corresponding to the position of the mover and to the current commanded in each drive coil are stored. Analysis of the stored signals identifies whether one of the position sensors along the track segment, one of the position magnets on the movers, or one of the drive coils, used to propel the movers along the track, has failed.
Abstract:
A method and system for detecting and reporting component failures in a linear drive system may identify failed position sensors, failed position magnets, and failed drive coils in the linear drive system. As a mover travels along a track segment in the linear drive system, signals corresponding to the position of the mover and to the current commanded in each drive coil are stored. Analysis of the stored signals identifies whether one of the position sensors along the track segment, one of the position magnets on the movers, or one of the drive coils, used to propel the movers along the track, has failed.