Abstract:
Disclosed is an at least partly crosslinked coating (K) composed of a near-surface coating zone (K1) and a volume coating zone (K2), the coating obtained from a composition comprising at least two different crosslinkable components (D1) and (D2), at least part of component (D1) having one or more surface-active structural units, wherein (i) the coating both in zone (K1) and in zone (K2) is at least partly crosslinked, and (ii) the crosslinking density of the coating in zone (K1) is higher than the crosslinking density of the coating in zone (K2). Also disclosed are coatings (K) wherein the concentration of component (D1) in the near-surface coating zone (K1) is higher than in the volume coating zone (K2), and the micropenetration hardness and/or the dry scratch resistance of the coating (K) is higher than that of an at least partly crosslinked coating (K′) obtained from a composition with no crosslinkable component (D1).
Abstract:
Disclosed is an at least partly crosslinked coating (K) composed of a near-surface coating zone (K1) and a volume coating zone (K2), the coating obtained from a composition comprising at least two different crosslinkable components (D1) and (D2), at least part of component (D1) having one or more surface-active structural units, wherein (i) the coating both in zone (K1) and in zone (K2) is at least partly crosslinked, and (ii) the crosslinking density of the coating in zone (K1) is higher than the crosslinking density of the coating in zone (K2). Also disclosed are coatings (K) wherein the concentration of component (D1) in the near-surface coating zone (K1) is higher than in the volume coating zone (K2), and the micropenetration hardness and/or the dry scratch resistance of the coating (K) is higher than that of an at least partly crosslinked coating (K′) obtained from a composition with no crosslinkable component (D1).
Abstract:
Process for applying integrated pretreatment layers to metallic surfaces, particularly the surfaces of coil metals, by treatment with a composition comprising at least one binder, crosslinker, a finely divided inorganic filler, and compounds containing at least two thioamide groups or containing one thioamide group and at least one functional group. Integrated pretreatment layer obtainable by the process.
Abstract:
Formaldehyde is prepared by oxidative dehydrogenation of methanol in the gas phase on a silver or silver-containing catalyst by means of an oxygen-containing gas which contains dinitrogen oxide.
Abstract:
Process for applying integrated pretreatment layers to metallic surfaces, particularly the surfaces of coil metals, by treatment with a composition comprising at least one binder, crosslinker, a finely divided inorganic filler, and compounds containing at least two thioamide groups or containing one thioamide group and at least one functional group. Integrated pretreatment layer obtainable by the process.
Abstract:
Use of dithiophosphinic acids of the general formula HS2P(R1)(R2) and/or salts thereof for producing chrome-free, polymer-containing corrosion control layers on metallic surfaces, R1 and R2 independently of one another each being organic radicals having 1 to 30 C atoms.