Abstract:
A spot-size converter for coupling light between a first waveguide and a second waveguide extends along a longitudinal waveguiding axis and includes a transition region. The transition region includes a first part of waveguiding structure, which is coupled to the first waveguide, and a second part of waveguiding structure, which is coupled to the second waveguide. The second part of waveguiding structure includes high-index elements arranged in multiple vertically spaced rows and horizontally spaced columns, and extends along the longitudinal waveguiding axis at least partially over the first part of waveguiding structure so as to define a low-index region where the mode of the first waveguide progressively transforms into the mode of the second waveguide, thereby enabling light propagation via a mode of the combined system of the first and second parts of waveguiding structures.
Abstract:
A mode coupler for modal conversion. The mode coupler includes a first rib waveguide configured to propagate, through a coupling region, a first optical signal comprising a second TE mode portion, wherein the second TE mode is associated with a second TE mode refractive index in the first rib waveguide, a second rib waveguide disposed in proximity to the first rib waveguide across the coupling region, where the first TE mode is associated with a first TE mode refractive index in the second rib waveguide that substantially matches the second TE mode refractive index in the first rib waveguide, and the coupling region configured to convert the second TE mode portion of the first optical signal into a second optical signal in the second rib waveguide, where the second optical signal is in the first TE mode of the second rib waveguide.
Abstract:
A spot-size converter having a waveguiding structure. The first part of the waveguiding structure receives light from or transmits light to a first waveguide in a first propagation mode. The first part of the waveguiding structure has a longitudinally varying effective refractive index that decreases away from the first waveguide. The second part of the waveguiding structure transmits light to or receives light from a second waveguide in a second propagation mode. The second part of the waveguiding structure has a number of high-index elements arranged in a single plane, extending along a longitudinal waveguiding axis and at least partially overlapping the first part of the waveguiding structure. The first propagation mode of the first waveguide progressively transforms into the second propagation mode of the second waveguide along the longitudinal waveguiding axis through an overlap region between the first part and the second part of the waveguiding structure.
Abstract:
A spot-size converter for coupling light between a first waveguide and a second waveguide extends along a longitudinal waveguiding axis and includes a transition region. The transition region includes a first part of waveguiding structure, which is coupled to the first waveguide, and a second part of waveguiding structure, which is coupled to the second waveguide. The second part of waveguiding structure includes high-index elements arranged in multiple vertically spaced rows and horizontally spaced columns, and extends along the longitudinal waveguiding axis at least partially over the first part of waveguiding structure so as to define a low-index region where the mode of the first waveguide progressively transforms into the mode of the second waveguide, thereby enabling light propagation via a mode of the combined system of the first and second parts of waveguiding structures.
Abstract:
An optical system may include a substrate that includes an etched region and a laser-induced breakage region. The optical system may further include an optical waveguide disposed on the substrate. The optical system may further include an optical device coupled to the optical waveguide within the etched region. The laser-induced breakage region may produce a predetermined coupling gap between the optical waveguide and the optical device.
Abstract:
A spot-size converter for coupling light between a first waveguide and a second waveguide extends along a longitudinal waveguiding axis and includes a transition region. The transition region includes a first part of waveguiding structure, which is coupled to the first waveguide, and a second part of waveguiding structure, which is coupled to the second waveguide. The second part of waveguiding structure includes high-index elements arranged in multiple vertically spaced rows and horizontally spaced columns, and extends along the longitudinal waveguiding axis at least partially over the first part of waveguiding structure so as to define a low-index region where the mode of the first waveguide progressively transforms into the mode of the second waveguide, thereby enabling light propagation via a mode of the combined system of the first and second parts of waveguiding structures.