Abstract:
A seal for a roll neck bearing has a two interlocked components - a rotating component fitted to the inner race of the bearing and a stationary component fitted to the outer race. The rotating component includes a shield which fits around the end of the inner race, and, while it establishes a static barrier along the inner race, it can float or be displaced axially on the inner race. The stationary component has a seal case which fits snugly in a bore that opens out of the end of the outer race, it being trapped in that bore by a chock into which the bearing fits. Both the shield and case have axial walls and radial walls, and at the ends of their radial walls carry elastomeric seal elements. The seal element of the shield contacts the axial wall of the seal case, whereas the seal element of the seal case contacts the axial wall of the shield and further establishes a labyrinth along the shield. The two seal elements include bumpers which are presented toward the radial walls and limit the distance the rotating component may be displaced axially relative to the stationary component.
Abstract:
A method for assembling a set of bearing assemblies 100 onto a mill roll 10 and for establishing a required bearing setting. The mill roll 10 is configured to receive a set of bearing assemblies 100 at each axial end, with the bearing rolling elements 100A contained within supporting chocks 102 adapted for placement within a mill housing. The chock assembly 102R and bearing assembly 100 at a first end of the roll are positioned first, and coupled to the first end an axial center rod 22 passing through an axial bore 24 of the roll 12. The chock assembly 102L and bearing assembly 100 at the second end of the roll 12 is then positioned onto the opposite end of the roll 12, and a connecting sub-assembly 300, 400, 504A is secured to the second end of the axial center rod 22. The connecting sub-assembly engages the second chock assembly 102L and bearing assembly 100, and is adjusted to achieve a desired bearing setting for both bearing assemblies 100 through the center rod 22.
Abstract:
A method for assembling a set of bearing assemblies 100 onto a mill roll 10 and for establishing a required bearing setting. The mill roll 10 is configured to receive a set of bearing assemblies 100 at each axial end, with the bearing rolling elements 100A contained within supporting chocks 102 adapted for placement within a mill housing. The chock assembly 102R and bearing assembly 100 at a first end of the roll are positioned first, and coupled to the first end an axial center rod 22 passing through an axial bore 24 of the roll 12. The chock assembly 102L and bearing assembly 100 at the second end of the roll 12 is then positioned onto the opposite end of the roll 12, and a connecting sub-assembly 300, 400, 504A is secured to the second end of the axial center rod 22. The connecting sub-assembly engages the second chock assembly 102L and bearing assembly 100, and is adjusted to achieve a desired bearing setting for both bearing assemblies 100 through the center rod 22.
Abstract:
A mill roll is supported at its roll necks on tapered roller bearings, each having several cones and corresponding cups and rows of tapered rollers between the raceways of each cone and cup. Each bearing also has rib rings located at the ends of its cups to provide surfaces against which the large diameter ends of the rollers in its several sets bear. The cups and rib rings are clamped together within a chock, and they, in turn, capture the several rows of rollers. The cone raceways taper downwardly away from the roll body and lie within a single conical envelope having its center along the axis of rotation for the bearing. This arrangement allows the chock, which carries the cups, rib rings and rollers, to be passed over the cones on the roll neck. The roll body is ground while the roll is supported on the bearings that are within the chocks and with the bearings in a condition of preload. This eliminates practically all eccentricity, so runout is maintained at a minimum. The bearings B are also maintained under preload during mill operation.