Abstract:
An illustrative embodiment includes a method for use in performing acoustic calibration of at least one audio output device for a plurality of listening locations. An audio input device generates a data signal based on a series of one or more tones output by the at least one audio output device. The audio input device wirelessly transmits the data signal to a calibration device. The audio input device is one of a plurality of audio input devices deployed at respective ones of the plurality of listening locations. The data signal is one of a plurality of data signals generated by respective ones of the plurality of audio input devices based on the series of one or more tones output by the at least one audio output device. The plurality of data signals are wirelessly transmitted by the respective ones of the plurality of audio input devices to the calibration device.
Abstract:
Presented is a roller shade system that includes a flexible shade material having a lower end, a rotatably supported roller tube that windingly receives the shade material, a stepper motor that operably engages the roller tube to rotate the roller tube to move the lower end of the shade material between a first position and a second position, an optical sensor configured for capturing an image frame of the shade material at linear positions along the shade material as the lower end of the flexible shade material moves from the first position to the second position, and a stepper motor controller configured for controlling the frequency of input pulses to the stepper motor to move the lower end of the flexible shade material from the first position to the second position at a substantially constant linear velocity in response to position information obtained from the plurality of captured image frames.
Abstract:
Presented is a system for synchronizing movement of roller shades each from a first position to a common second position. The system includes a master controller, a plurality of optical assemblies each configured to obtain information related to the position of one of the roller shades, and a plurality of motor assemblies. Each of the motor assemblies is configured for receiving the position information from one of the plurality of optical assemblies, receiving a master shade movement time from the master controller, and moving one of the of roller shades from the first position to the common second position in response to the received position information so that the roller shade arrives at the common second position simultaneously with the other roller shades in a time equal to the master shade movement time.
Abstract:
Presented is a method for synchronizing movement of a plurality of roller shades each disposed at a first position to a common second position. The method includes obtaining information related to the position of each of the plurality of roller shades with a respective one of a plurality of optical assemblies, and moving each of the plurality of roller shades from the first position to the common second position in response to the respective obtained position information so that each of the plurality of roller shades arrives at the common second position at the same time.
Abstract:
A system is provided for determining which controllable device an audible command is directed towards. The system comprises two or more controllable devices, two or more electronic devices, each of which is adapted to receive the audible command, add a respective electronic device identifier to the received audible command, time and date stamp the received audible command, and transmit the respective time and date stamped versions of the audible command, and wherein each of the two or more electronic device are further adapted to controller respective ones of the two or more controllable devices, and a central processor adapted to receive each of the transmitted time and date stamped versions of the audible command and perform processing based on the time and date stamp, wherein the electronic device that reports the earlier time and date stamp, as ascertained by the respective electronic device identifier and a comparison of each of the time and date stamps performed by the central processor, is the electronic device to which the audible command is directed towards.
Abstract:
Presented is a wall-mounted control system for a portable touch screen device. The control system includes a housing, a touch screen mounting member moveably coupled to the housing and configured to releasably hold the portable touch screen device, a processor configured for providing an interface between the portable touch screen device and one or more remote systems, a docking connector configured for electrically mating with the portable touch screen device and establishing electrical communication between the processor and the portable touch screen device, and a communication circuitry configured for establishing communication between the processor the one or more remote systems.
Abstract:
A master transmitter distributes a plurality of audio channels to one or more expansion receivers as a multiplexed audio stream. Control information is also transmitted between the master transmitter and the expansion receivers. Both the control information and the multiplexed audio stream are transmitted on the same cable allowing for reduced clutter and cheaper material and installation costs.
Abstract:
A master transmitter distributes a plurality of audio channels to one or more expansion receivers as a multiplexed audio stream. Control information is also transmitted between the master transmitter and the expansion receivers. Both the control information and the multiplexed audio stream are transmitted on the same cable allowing for reduced clutter and cheaper material and installation costs.
Abstract:
Presented is a wall-mounted control system for a portable touch screen device. The control system includes a housing, a touch screen mounting member moveably coupled to the housing and configured to releasably hold the portable touch screen device, a processor configured for providing an interface between the portable touch screen device and one or more remote systems, a docking connector configured for electrically mating with the portable touch screen device and establishing electrical communication between the processor and the portable touch screen device, and a communication circuitry configured for establishing communication between the processor the one or more remote systems.
Abstract:
Presented is a wall-mounted control system for a portable touch screen device. The control system includes a housing, a touch screen mounting member moveably coupled to the housing and configured to releasably hold the portable touch screen device, a processor configured for providing an interface between the portable touch screen device and one or more remote systems, a docking connector configured for electrically mating with the portable touch screen device and establishing electrical communication between the processor and the portable touch screen device, and a communication circuitry configured for establishing communication between the processor the one or more remote systems.