Abstract:
Techniques for self-diagnosing performance problems in a database are provided. The techniques include classifying one or more performance problems in a database system. One or more values for quantifying an impact of the one or more performance problems on the database system are then determined. The quantified values are determined based on the performance of operations in the database system. A performance problem based on the one or more quantified values is then determined. A solution for the performance problem is generated and may be outputted.
Abstract:
Techniques that improve manageability of systems. Techniques are provided for creating different types of baselines that are more flexible and dynamic in nature. A future-based baseline may be created defining a period of time, wherein at least a portion of the period of time is in the future. A baseline may be created that is a composite of multiple baselines. In general, baselines may be specified having one or more periods of time that are either contiguous or non-contiguous. A template for creating a set of baselines based on a set of time periods may also be created, where the template can be used to create a baseline for each of the set of time periods. A moving window baseline may be created having an associated time window that changes with passage of time, where accordingly the data associated with the baseline may also dynamically change with passage of time.
Abstract:
Techniques for systematically gathering, organizing, and storing diagnostic data related to multiple monitored systems (e.g., multiple instances of a product or multiple products). A centralized repository is provided that is organized in a hierarchical manner to facilitate proper organization of the diagnostic data related to multiple monitored systems. In one embodiment, a root directory comprising one or more subdirectories is provided for storing diagnostic data collected for each monitored system. Multiple root directories may be provided under a common base directory for storing diagnostic data corresponding to multiple monitored systems. This enables correlation of diagnostic data across multiple monitored systems.
Abstract:
Techniques for controlling collection of diagnostic data in a monitored system. A set of flood control rules are configured for the monitored system for controlling the gathering of diagnostic data in the monitored system. The set of flood control rules may include one or more default flood control rules. The set of flood control rules are user-configurable enabling the user of the monitored system to set policies for dynamically controlling gathering of diagnostic data for the monitored system. In one embodiment, diagnostic data gathering is controlled based upon a number of previous occurrences of a condition in some predefined or user-configured time frame that triggers diagnostic data gathering and/or a number of previous executions of an action performed in some predefined or user-configured time frame responsive to the condition in the monitored system.
Abstract:
Quantifying the impact of wasteful operations on a database system is provided. One or more operations that are determined to be wasteful are received. The impact of the wasteful operations on performance in a database may then be quantified. The database is monitored to determine when a wasteful operation is being performed. When a wasteful operation is detected, a time value is recorded of the time spent on processing the wasteful operation. The time value is stored and used to quantify an impact of a performance problem in a database. The time value may be stored and associated with other time values that are recorded for the same wasteful operation. Thus, the impact of wasteful operations that are performed and processed in a database may be determined.
Abstract:
Systems and methods to define and store performance baselines. A baseline may be defined as a pair of snapshots, each snapshot containing the same set of statistics and having a timestamp value associated therewith. The present invention allows for the designation, automatically or manually, of statistics collected over a certain period of time to be stored and used for comparison. Baselines may be used, for example, to manually or automatically compare with current system performance, compare difference-difference values and set thresholds to monitor current system performance.
Abstract:
Techniques for intelligently identifying diagnostic data to be communicated from a product or system site (e.g., a customer site) to a diagnosis site (e.g., a vendor site). An appropriate amount of diagnostic data is identified to facilitate efficient and quick diagnosis and error resolution. Techniques are also provided that enable a customer to review the data identified for transmission to the diagnosis site prior to the transmission.
Abstract:
Techniques for systematically gathering, organizing, and storing diagnostic data related to multiple monitored systems (e.g., multiple instances of a product or multiple products). A centralized repository is provided that is organized in a hierarchical manner to facilitate proper organization of the diagnostic data related to multiple monitored systems. In one embodiment, a root directory comprising one or more subdirectories is provided for storing diagnostic data collected for each monitored system. Multiple root directories may be provided under a common base directory for storing diagnostic data corresponding to multiple monitored systems. This enables correlation of diagnostic data across multiple monitored systems.
Abstract:
A method for receiving a database query language statement and performance information about the statement at an optimizer and generating one or more tuning actions for the statement with the performance information is disclosed.
Abstract:
Systems and methods to define and store performance baselines. A baseline may be defined as a pair of snapshots, each snapshot containing the same set of statistics and having a timestamp value associated therewith. The present invention allows for the designation, automatically or manually, of statistics collected over a certain period of time to be stored and used for comparison. Baselines may be used, for example, to manually or automatically compare with current system performance, compare difference-difference values and set thresholds to monitor current system performance.