摘要:
An insulated glazing unit includes a spacer defining a framed area, first and second glazing panes attached to the spacer, a pane conductive layer on an inner surface of the first glazing pane, and a dielectric layer disposed on the pane conductive layer. A shade for use with the insulated glazing unit is affixed to the first glazing pane. The shade includes one or more layers selected from a resilient layer, a substantially transparent shade conductive layer, and an opaque shade conductive layer. When an electric drive is applied between the pane conductive layer and the shade conductive layer, a potential difference between the pane conductive layer and the shade conductive layer causes the shade to extend from a retracted configuration to an extended configuration. The shade can further include at least one ink coating layer including pigments that selectively reflect or absorb certain visible colors and infrared.
摘要:
An insulated glazing unit has controllable radiation transmittance. Peripheries of first and second glazing panes are attached and spaced apart facing each other and then attached to a supporting structure. A conductive layer is atop the first glazing pane inner surface as a fixed position electrode. A dielectric is atop the conductive layer. A coiled spiral roll, variable position electrode is between the first and second glazing panes, a width of its outer edge attached to the dielectric. A first electrical lead is connected to the variable position electrode's conductive layer. A second electrical lead is connected to the conductive layer atop the first glazing pane. Applied voltage between the first and second electrical leads creates a predetermined potential difference between the electrodes, and the variable position electrode unwinds and rolls out to at least partially cover the first glazing pane, at least reducing the intensity of passing radiation.
摘要:
An insulated glazing unit has controllable radiation transmittance. Peripheries of first and second glazing panes are attached and spaced apart facing each other and then attached to a supporting structure. A conductive layer is atop the first glazing pane inner surface as a fixed position electrode. A dielectric is atop the conductive layer. A coiled spiral roll, variable position electrode is between the first and second glazing panes, a width of its outer edge attached to the dielectric. A first electrical lead is connected to the variable position electrode's conductive layer. A second electrical lead is connected to the conductive layer atop the first glazing pane. Applied voltage between the first and second electrical leads creates a predetermined potential difference between the electrodes, and the variable position electrode unwinds and rolls out to at least partially cover the first glazing pane, at least reducing the intensity of passing radiation.
摘要:
An insulated glazing unit has controllable radiation transmittance. Peripheries of first and second glazing panes are attached and spaced apart facing each other and then attached to a supporting structure. A conductive layer is atop the first glazing pane inner surface as a fixed position electrode. A dielectric is atop the conductive layer. A coiled spiral roll, variable position electrode is between the first and second glazing panes, a width of its outer edge attached to the dielectric. A first electrical lead is connected to the variable position electrode's conductive layer. A second electrical lead is connected to the conductive layer atop the first glazing pane. Applied voltage between the first and second electrical leads creates a predetermined potential difference between the electrodes, and the variable position electrode unwinds and rolls out to at least partially cover the first glazing pane, at least reducing the intensity of passing radiation.
摘要:
An insulated glazing unit has controllable radiation transmittance. Peripheries of first and second glazing panes are attached and spaced apart facing each other and then attached to a supporting structure. A conductive layer is atop the first glazing pane inner surface as a fixed position electrode. A dielectric is atop the conductive layer. A coiled spiral roll, variable position electrode is between the first and second glazing panes, a width of its outer edge attached to the dielectric. A first electrical lead is connected to the variable position electrode's conductive layer. A second electrical lead is connected to the conductive layer atop the first glazing pane. Applied voltage between the first and second electrical leads creates a predetermined potential difference between the electrodes, and the variable position electrode unwinds and rolls out to at least partially cover the first glazing pane, at least reducing the intensity of passing radiation.
摘要:
An insulated glazing unit has controllable radiation transmittance. Peripheries of first and second glazing panes are attached and spaced apart facing each other and then attached to a supporting structure. A conductive layer is atop the first glazing pane inner surface as a fixed position electrode. A dielectric is atop the conductive layer. A coiled spiral roll, variable position electrode is between the first and second glazing panes, a width of its outer edge attached to the dielectric. A first electrical lead is connected to the variable position electrode's conductive layer. A second electrical lead is connected to the conductive layer atop the first glazing pane. Applied voltage between the first and second electrical leads creates a predetermined potential difference between the electrodes, and the variable position electrode unwinds and rolls out to at least partially cover the first glazing pane, at least reducing the intensity of passing radiation.
摘要:
Inventive electromagnetic-wave-modulating capacitors with movable electrodes are low-cost, low-energy, reliable and fast-acting elements for employment in highly transparent, conductive fixed electrodes and are incorporated, among others, in reflective display pixels for large and small-scale video displays, including full-color displays where multiple such capacitors are aligned in a single pixel. Further embodiments, not necessarily with a transparent electrode, are assemblable into array antennas deployable in outer space; provide digitally controllable or responsive such variable capacitors; and in mechanically active applications can be constituted as accelerometers, or in microrobotics. Constructions with ultra-thin electrodes have special advantages.
摘要:
A method of manufacturing a light modulating capacitor display by successive operations on an assembly comprising forming a layer of a conductive material on a substrate in a pattern is disclosed. The pattern forms a plurality of fixed electrodes. The pattern forms electrical conductors for driving the fixed electrodes and electrical conductors for driving shutter electrodes. A layer of insulative material is laid over portions of the pattern forming the plurality of fixed electrodes. A shutter electrode forming layer is attached to the assembly. The shutter electrode forming layer has a conductive side and a nonconductive side. The conductive side is placed in facing, contacting relationship to the layer of insulative material and the pattern of conductive material. The conductive material is removed from the shutter electrode forming layer to form groups of shutter electrodes. A plurality of shutters are cut from the shutter electrode forming layer.
摘要:
A reflective full color light modulating capacitor having a fixed conductive electrode and an active metalized conductive electrode which is deformed from a relaxed state positioned away from the fixed electrode and a deformed state closer to the fixed electrode, whereby the degree to which the active electrode is deformed from its relaxed state varies in proportion to the magnitude of the voltage potential thereon, the metalization on the active conductive electrode being insulated from the fixed conductive electrode.
摘要:
A flat panel display has a linear array of switchable light emitting diodes (“LEDs”) to emit bands of light across the display, providing a light pattern programmable at video frequencies and a two-dimensional electropolymeric shutter array to convert the light pattern into a video image. The light pattern can be varied or controlled spatially, with respect to both hue and intensity, by suitable drive signals, at points along the array determined by the location of individual LEDs, or groups of LEDs, and temporally as the shutters in the array are opened and closed to provide a pleasing full color gamut for every pixel in the display. Closed shutters, displaying a reflective appearance, can be employed for background or other effects. The shutter array can be flexibly constructed and supported on a flexible substrate to provide a flexible display.