Abstract:
The present invention relates to a decontamination method in which an object to be decontaminated is immersed in a liquid, bubbles are produced by blowing vapor in the liquid, and these bubbles are caused to burst on a solid surface which constitutes the object to be decontaminated which is brought into contact with the liquid, whereby substances adhered to the solid surface are separated and removed by the impulsive force produced when the bubbles burst. Also provided is a method of decontaminating solid surfaces which exhibits a high degree of efficiency and a high level of safety.
Abstract:
A novel decorative panel comprises specified rigid decorative sheets replaceably installed on a structural support such as frame works, substrate boards or walls. Such decorative sheets can be readily installed or replaced by the use of removable fixing means such as screws. The decorative sheet is characterized by cutouts at the corners thereof and depressions adjacent to the cutouts. When four decorative sheets are assembled together, the assembled corners of the sheets form a cut-out hole where a fixing means is inserted and a depression around the hole where the head of the fixing means is recessed. By utilizing the heads of fixing means, a variety of decorative accessories or articles can be further set on the decorative panel by means of pins, hooks, rods or magnet pieces.
Abstract:
The pressure P.sub.R in the reactor pressure vessel, the flow rate W.sub.c of the cooling water flowing through the core in the reactor pressure vessel, and the flow rate W.sub.STM of the steam supplied from the reactor pressure vessel to the turbine are detected. The enthalpy H.sub.f of the saturated cooling water is determined on the basis of the pressure P.sub.R. The values of the cooling water flow rate W.sub.c, the steam flow rate W.sub.STM, the enthalpy H.sub.f of the saturated cooling water and a predetermined enthalpy H.sub.IN of the cooling water at the core inlet are substituted into the equation below thereby to obtain the enthalpy H.sub.fw of the feed water. ##EQU1## An error is determined between the feed-water enthalpy H.sub.fw thus obtained and the enthalpy T.sub.fw of the feed water actually supplied into the reactor pressure vessel, and on the basis of this error, the opening of the flow rate control valve on the turbine bleeding pipe is adjusted, so that the flow rate of the steam bled from the turbine for heating the feed water is adjusted according to the error.
Abstract:
A load control system for a boiling water reactor power plant. A recirculating pump speed demand signal and a total steam flow demand signal are derived on the basis of combination of a first control signalproduced in accordance with a power difference signal representative of difference between an actual value of an output power of an electric generator and a set value for the generator output and a second control signal produced in accordance with a pressure difference signal representative of difference between an actually measured value of the reactor pressure and a set value therefor. Speed of a recirculating pump is controlled in dependence on the recirculating pump speed demand signal, while opening degrees of a governor valve and a bypass valve of a turbine are controlled in accordance with the total steam flow demand signal. The recirculating pump speed demand signal and the total steam flow demand signal are derived by combining the first or the second control signal which has been regulated through gain elements. Further, the power difference signal is added to the pressure difference signal for modifying the set point for the reactor pressure.
Abstract:
A method of operating a nuclear reactor adapted to use cross-shaped control rods. The control rods are grouped into a plurality of groups having a first group consisting of a control rod located at the center of the core, a second group consisting of 8 control rods surrounding the control rod of the first group, a third group consisting of control rods located adjacent to and outside of the control rods of the second group, and other groups determined successively in the same manner as in the third group. During the operation period other than the period in which the number of the control rods to be inserted for realizing the critical condition of said nuclear reactor is less than 6, the nuclear reactor is operated with control rod patterns in which the inserted control rods are selected from control rods of alternate or every other groups of said groups so as to include at least a pair of control rods which are located in a similar manner to that of the KNIGHT's movement on a chess board.
Abstract:
A method of operating a nuclear reactor wherein the reactor is operated for more than 50% of its operating period with the control rod patterns in which, in the central region of the reactor core accounting for at least 50% thereof, the control rods inserted from the bottom of the reactor core are at the depths of between 16/24 and 21/24 of the height of the reactor core with eight control rods surrounding each of said inserted control rods being fully withdrawn.