Abstract:
A pressurized water reactor (PWR) comprises a pressure vessel containing primary coolant water. A nuclear reactor core is disposed in the pressure vessel and includes a plurality of fuel assemblies. Each fuel assembly includes a plurality of fuel rods containing a fissile material. A control system includes a plurality of control rod assemblies (CRA's). Each CRA is guided by a corresponding CRA guide structure. A support element is disposed above the CRA guide structures and supports the CRA guide structures. The pressure vessel may be cylindrical, and the support element may comprise a support plate having a circular periphery supported by the cylindrical pressure vessel. The CRA guide structures suitably hang downward from the support plate. The lower end of each CRA guide structure may include alignment features that engage corresponding alignment features of the upper end of the corresponding fuel assembly.
Abstract:
A rod transfer assembly has an outer rotating plug. A pick-up arm assembly extends from the outer rotating plug and includes a pivoting arm. An inner rotating plug is disposed off-center from and within the outer rotating plug and is rotatable independent of a rotation of the outer rotating plug. An access port rotating plug is disposed off-center from and within the inner rotating plug and is rotatable independent of rotation of the outer and inner rotating plugs. A pull arm extends from the access port rotating plug.
Abstract:
The present invention relates to a method for controlling a pressurized water reactor (100) comprising the steps that involve measuring the effective power (Pe) of the nuclear reactor; acquiring a reference value for the desired power (Pc); acquiring an estimated duration (DURATION) for the increase in power in order to achieve said reference value of the target power (Pc) desired, said estimated duration (DURATION) corresponding to the time taken for the power to increase from said effective power (Pe) to said reference value for the target power (Pc); determining the reference position (Z) of at least one control rod cluster among said plurality of control rod clusters (40) in order to achieve said reference value for said target power (Pc) desired as a function of said estimated duration (DURATION), of said measured effective power (Pe) and of said reference value for said target power (Pc); monitoring the position of said at least one control rod cluster so as to position it in its reference position (Z).
Abstract:
An integral pressurized water reactor (PWR) comprises: a cylindrical pressure vessel including an upper vessel section and a lower vessel section joined by a mid-flange; a cylindrical central riser disposed concentrically inside the cylindrical pressure vessel and including an upper riser section disposed in the upper vessel section and a lower riser section disposed in the lower vessel section; steam generators disposed inside the cylindrical pressure vessel in the upper vessel section; a reactor core comprising fissile material disposed inside the cylindrical pressure vessel in the lower vessel section; and control rod drive mechanism (CRDM) units disposed inside the cylindrical pressure vessel above the reactor core and in the lower vessel section. There is no vertical overlap between the steam generators and the CRDM units.
Abstract:
Nuclear reactor systems and methods are described having many unique features tailored to address the special conditions and needs of emerging markets. The fast neutron spectrum nuclear reactor system may include a reactor having a reactor tank. A reactor core may be located within the reactor tank. The reactor core may include a fuel column of metal or cermet fuel using liquid sodium as a heat transfer medium. A pump may circulate the liquid sodium through a heat exchanger. The system may include a balance of plant with no nuclear safety function. The reactor may be modular, and may produce approximately 100 MWe.
Abstract:
The present invention relates to a method for controlling a pressurized water reactor (100) comprising the steps that involve measuring the effective power (Pe) of the nuclear reactor; acquiring a reference value for the desired power (Pc); acquiring an estimated duration (DURATION) for the increase in power in order to achieve said reference value of the target power (Pc) desired, said estimated duration (DURATION) corresponding to the time taken for the power to increase from said effective power (Pe) to said reference value for the target power (Pc); determining the reference position (Z) of at least one control rod cluster among said plurality of control rod clusters (40) in order to achieve said reference value for said target power (Pc) desired as a function of said estimated duration (DURATION), of said measured effective power (Pe) and of said reference value for said target power (Pc); monitoring the position of said at least one control rod cluster so as to position it in its reference position (Z).
Abstract:
A pressurized water nuclear reactor (PWR) includes a once through steam generator (OTSG) disposed in a generally cylindrical pressure vessel and a divider plate spaced apart from the open end of a central riser. A sealing portion of the pressure vessel and the divider plate define an integral pressurizer volume that is separated by the divider plate from the remaining interior volume of the pressure vessel. An internal control rod drive mechanism (CRDM) has all mechanical and electromagnetomotive components including at least a motor and a lead screw disposed inside the pressure vessel. Optionally CRDM units are staggered at two or more different levels such that no two neighboring CRDM units are at the same level. Internal primary coolant pumps have all mechanical and electromagnetomotive components including at least a motor and at least one impeller disposed inside the pressure vessel. Optionally, the pumps and/or CRDM are arranged below the OTSG
Abstract:
Systems and methods of monitoring a rod control system of a nuclear power plant, including calculating impedance of at least one coil of a rod movement mechanism non-intrusively while the system is operating, comparing a measured impedance to a reference impedance, and determining if the measured impedance deviates from the reference impedance value by a predetermined amount to indicate degradation of the rod control system.
Abstract:
A pressurized water reactor (PWR) includes a pressure vessel containing a nuclear reactor core immersed in primary coolant water, control rod assemblies (CRA's), and control rod drive mechanisms (CRDM's) operating the CRA's. The reactor core has axially varying 235U enrichment and/or axially varying burnable poison concentration. A CRDM controller controls the CRA's over a burn-up cycle that does not include fuel assembly shuffling and is divided into a plurality of burn-up intervals. The CRDM controller is configured to, for each burn up interval: position the CRA's in accordance with a CRA pattern defining a set of fixed positions for the CRA's except for a sub-set of CRA's designated by the CRA pattern as floating CRA's, and control power level of the PWR by adjusting the floating CRA's without not adjusting the CRA's not designated as floating CRA's. The primary coolant water optionally does not contain soluble neutron poison.
Abstract:
A control strategy for a pressurized water nuclear reactor that employs separate, independent control rod banks for respectively controlling Tavg and axial offset within corresponding deadbands. The strategy does not permit the control banks controlling reactor core power and the control banks controlling axial offset to move together, but normally gives preference to the control banks controlling the Tavg except when a demand signal is received simultaneously by both independent control rod banks to move in a same direction, in which case, the control bank compensating for the axial offset is given preference.