Abstract:
A device for retrieving items endovascularly includes a sheath having a first lumen containing a snare that can be deployed out a distal end of the sheath and retracted back into the sheath for pulling an IVC filter into the sheath. The sheath has a second lumen that opens through a sidewall of the sheath proximal of the distal end. The second lumen contains a removal assist device that can be deployed through the sidewall and used to dislodge and/or cut an item to be retrieved from a vein wall. The removal assist device includes a catheter, a cutting head, and a pull wire. The pull wire has a proximal portion protruding from a proximal end of the catheter and a distal end connected to the cutting head. The pull wire is movable within the catheter to selectively extend and retract the cutting head from the distal end of the catheter.
Abstract:
A device for assisting in the removal of items endovascularly includes a catheter, a cutting head, and a pull wire. The pull wire has a proximal portion protruding from a proximal end of the catheter and a distal end connected to the cutting head. The pull wire is movable within the catheter to selectively extend and retract the cutting head from the distal end of the catheter. The cutting head is arranged to hold and/or cut an item to be removed.
Abstract:
A method of making catheters is disclosed in which the wall of the catheter has a porous structure for carrying additional agents, such as therapeutic agents, diagnostic agents and/or device enhancements. The method includes applying a base polymer material and an inert material over the outer surface of a core, and curing or consolidating the base polymer material to form a catheter having a porous polymer layer with the inert material contained within the pores thereof. The inert material can be applied with the base polymer material or in a separate step after the base polymer material has been partially cured or consolidated to form the porous polymer layer. Additional agents can be mixed with the inert material before it is applied to the catheter, or can be applied to the porous polymer layer of the catheter in a separate step after the inert material is removed therefrom.
Abstract:
A medical device and method for traversing an occlusion in a vessel includes a straightening sleeve positioned at a distal aspect of a catheter, a steering sleeve having an arcuate distal end, and a guidewire disposed through the steering sleeve. The steering sleeve has a first position in which the arcuate distal end is straightened within the straightening sleeve, and a second position in which the steering sleeve extends distally past the straightening sleeve to expose the arcuate distal end. The tip of the arcuate distal end of the steering sleeve or the guidewire can be used to pierce the occlusion. An arrangement of hub assemblies with locking mechanisms and motion limiting structures facilitates adjusting and locking the relative positions of the straightening sleeve, the steering sleeve, and the guidewire. Detent mechanisms are associated with the motion limiting structures for providing controlled incremental movement of the sleeves and the guidewire.
Abstract:
An apparatus and method for curving a catheter after deployment include a catheter having a primary lumen, a secondary lumen, and a resilient fiber contained within the secondary lumen. The resilient fiber and the secondary lumen have corresponding, preformed curve shapes when the catheter is in a straight, unstressed condition. The resilient fiber is slidable within the secondary lumen to create a desired curve shape in the catheter as the curved portion of the resilient fiber slides into an originally straight portion of the secondary lumen. In another embodiment, the preformed curve shape of the resilient fiber is held in a straight condition within a stiff, marker ring segment of the catheter until after the catheter is deployed. Once deployed, the resilient fiber is slid out of the marker ring segment, and the preformed curve shape of the resilient fiber creates a corresponding curve shape in the catheter.
Abstract:
An apparatus and method for curving a catheter after deployment include a catheter having a primary lumen, a secondary lumen, and a resilient fiber contained within the secondary lumen. The resilient fiber and the secondary lumen have corresponding, preformed curve shapes when the catheter is in a straight, unstressed condition. The resilient fiber is slidable within the secondary lumen to create a desired curve shape in the catheter as the curved portion of the resilient fiber slides into an originally straight portion of the secondary lumen. In another embodiment, the preformed curve shape of the resilient fiber is held in a straight condition within a stiff, marker ring segment of the catheter until after the catheter is deployed. Once deployed, the resilient fiber is slid out of the marker ring segment, and the preformed curve shape of the resilient fiber creates a corresponding curve shape in the catheter.
Abstract:
A method of making catheters is disclosed in which various additives are consolidated into polymer walls of the catheters. The method includes providing a core, spraying a base polymer material over the outer surface of the core, spraying an additive material over or together with the base polymer material, and consolidating the additive material and the base polymer material together to form the catheter wall. The base polymer material and additive material are each applied as a fine particulate powder or solution of fine particulate, which can be sprayed over an outer surface of the core and the catheter wall as the catheter is formed. The additive material can be selected from several therapeutic agents, diagnostic agents, and/or polymers for modifying the base polymer materials. The additive material can be consolidated with the base polymer material throughout the polymer wall or primarily on the outer surface of the polymer wall.
Abstract:
An apparatus and method for curving a catheter after deployment include a catheter having a primary lumen, a secondary lumen, and a resilient fiber contained within the secondary lumen. The resilient fiber and the secondary lumen have corresponding, preformed curve shapes when the catheter is in a straight, unstressed condition. The resilient fiber is slidable within the secondary lumen to create a desired curve shape in the catheter as the curved portion of the resilient fiber slides into an originally straight portion of the secondary lumen. In another embodiment, the preformed curve shape of the resilient fiber is held in a straight condition within a stiff, marker ring segment of the catheter until after the catheter is deployed. Once deployed, the resilient fiber is slid out of the marker ring segment, and the preformed curve shape of the resilient fiber creates a corresponding curve shape in the catheter.
Abstract:
A medical device for traversing an occlusion in a vessel includes a straightening sleeve positioned at a distal aspect of a catheter, a steering sleeve having an arcuate distal end, and a guidewire disposed through the steering sleeve. The steering sleeve has a first position in which the arcuate distal end is straightened within the straightening sleeve, and a second position in which the steering sleeve extends distally past the straightening sleeve to expose the arcuate distal end. The tip of the arcuate distal end of the steering sleeve or the guidewire can be used to pierce the occlusion. An arrangement of hub assemblies with locking mechanisms and motion limiting structures facilitates adjusting and locking the relative positions of the straightening sleeve, the steering sleeve, and the guidewire. Detent mechanisms are associated with the motion limiting structures for providing controlled incremental movement of the sleeves and the guidewire.
Abstract:
An apparatus and method for filtering intravascular fluids and for delivering diagnostic and therapeutic agents intravascularly is disclosed in which the apparatus has a shape defined by a preset shape of a resilient fiber core. The resilient fiber core is covered by a soft polymer tubing or other polymer material to form a delivery apparatus that takes the shape of the resilient fiber core. Various shapes and structures are disclosed that infuse diagnostic and therapeutic agents through a lumen of the polymer tubing, that deliver the agents in the form of a soluble coating, that circulate or contain a preloaded charge of radioactive material for intravascular radiotherapy, and that deploy filtration devices intravascularly for removing particulate matter from body fluid. The resilient fiber core and soft polymer material permit the construction of a very small apparatus that can be removed easily following treatment. Various deployment systems are disclosed for deploying the filtering and delivery apparatuses into a vessel and for protecting against radiation exposure.