Abstract:
The embodiments relate to a test configuration for an impulse voltage test of electric high-voltage components with a lightning generator. The lightning generator can be moved between a first horizontal position within a cuboid container, and a vertical position relative to the container. A movement between the two positions includes a pivoting movement about a rotational axis. The proofing movement is transverse to the longitudinal direction of the lightning generator. The container can be closed at the top by at least one moveable cover.
Abstract:
The embodiments relate to a test configuration for an impulse voltage test of electric high-voltage components with a lightning generator. The lightning generator can be moved between a first horizontal position within a cuboid container, and a vertical position relative to the container. A movement between the two positions includes a pivoting movement about a rotational axis. The proofing movement is transverse to the longitudinal direction of the lightning generator. The container can be closed at the top by at least one moveable cover.
Abstract:
Exemplary embodiments are directed to a test arrangement for testing surge voltage in electrical high voltage components with a surge voltage generator and a voltage distributor. The surge voltage generator and voltage distributor have a tower-like structure with a first and a second structure end. A rectangular container is connected to the first and second structure and includes a first and a second container end. At least one of the surge voltage generator and the voltage distributor are movable between a first substantially horizontal position inside the container and a substantially vertical position relative to the container. Each movement between the two positions involves a pivot motion about a rotational axis perpendicular to the longitudinal direction of the surge voltage generator.
Abstract:
A test arrangement is provided for AC voltage testing of high voltage components including at least one inverter, at least one test transformer, at least one high-voltage inductor and at least one further high voltage component arranged as test components in a common cuboid container. The at least one high-voltage inductor is movable at least partially out of the container through at least one opening on a boundary surface of the container, by means of a movement apparatus. The at least one further high voltage component is movable within the cuboid container from a transport position to a working position.
Abstract:
Exemplary embodiments are directed to a test arrangement for testing surge voltage in electrical high voltage components with a surge voltage generator and a voltage distributor. The surge voltage generator and voltage distributor have a tower-like structure with a first and a second structure end. A rectangular container is connected to the first and second structure and includes a first and a second container end. At least one of the surge voltage generator and the voltage distributor are movable between a first substantially horizontal position inside the container and a substantially vertical position relative to the container. Each movement between the two positions involves a pivot motion about a rotational axis perpendicular to the longitudinal direction of the surge voltage generator.
Abstract:
A test arrangement is provided for AC testing of electrical high voltage components including at least one inverter, at least one test transformer and at least one high-voltage inductor arranged as test components in a common cuboid container. The at least one high-voltage inductor is at least partly removable from the container through at least one opening on a boundary surface of the container by means of a movement apparatus.
Abstract:
A test arrangement is provided for AC testing of electrical high voltage components including at least one inverter, at least one test transformer and at least one high voltage inductor arranged as test components in a common cuboid container. The at least one high voltage inductor runs along an imaginary axis and may be at least partly removed from the container through at least one opening in a limit face of the container by means of a movement device. The at least one high voltage inductor includes has integrated surge protection.
Abstract:
A test arrangement is provided for AC testing of electrical high voltage components including at least one inverter, at least one test transformer and at least one high-voltage inductor arranged as test components in a common cuboid container. The at least one high-voltage inductor is at least partly removable from the container through at least one opening on a boundary surface of the container by means of a movement apparatus.
Abstract:
A test arrangement is provided for AC testing of electrical high voltage components including at least one inverter, at least one test transformer and at least one high voltage inductor arranged as test components in a common cuboid container. The at least one high voltage inductor runs along an imaginary axis and may be at least partly removed from the container through at least one opening in a limit face of the container by means of a movement device. The at least one high voltage inductor includes has integrated surge protection.
Abstract:
A test arrangement is provided for AC voltage testing of high voltage components including at least one inverter, at least one test transformer, at least one high-voltage inductor and at least one further high voltage component arranged as test components in a common cuboid container. The at least one high-voltage inductor is movable at least partially out of the container through at least one opening on a boundary surface of the container, by means of a movement apparatus. The at least one further high voltage component is movable within the cuboid container from a transport position to a working position.