摘要:
Method and apparatus for an integrated circuit having memory including thyristor-based memory cells is described. A pair of the thyristor-based memory cells are commonly coupled via a bitline region, where a parasitic bipolar junction transistor is defined therebetween responsive to the bitline region being common. In another implementation, the pair of the thyristor-based memory cells are commonly coupled via the anode region, where a parasitic bipolar junction transistor is defined therebetween responsive to the anode region being common. The common bitline or anode region, respectively, has a locally thinned region to inhibit charge transfer between the pair via the parasitic bipolar junction transistor. Moreover, a method for forming a field-effect transistor on a silicon-on-insulator wafer is described, where charge transfer facilitated by a parasitic bipolar transistor is reduced responsive to an increase in dopants at least proximate to an insulator layer.
摘要:
A method for forming a photodiode cathode in an integrated circuit imager includes defining and implanting a photodiode cathode region with a photodiode cathode implant dose of a dopant species and defining and implanting an edge region of the photodiode cathode region with a photodiode cathode edge implant dose of a dopant species to form a region of higher impurity concentration than the photodiode cathode impurity concentration.
摘要:
In accordance with an embodiment of the present invention, a thyristor-based semiconductor memory device may comprise an array of thyristor-based memory formed in an SOI wafer. A supporting substrate may be formed with a density of dopants sufficient to assist delivery of a bias level to the backside of an insulating layer beneath a thyristor. Such conductivity within the substrate may allow reliable back-gate control for the gain of a component bipolar device of the thyristor.
摘要:
In accordance with an embodiment of the present invention, a semiconductor memory device includes an array of thyristor-based memory formed in a silicon-on-insulator (SOI) supporting substrate. A portion of the supporting structure of the SOI substrate has a density of dopants sufficient to assist delivery of a bias to the backside of an insulating layer beneath a thyristor of the thyristor-based semiconductor memory. By enabling biasing of the substrate at the backside of the insulating layer beneath the thyristor, a back-gate control is available for controlling or compensating the gain of a component bipolar device of the thyristor with respect to temperature.