摘要:
Embodiments of the invention provide a photoacoustic microscopy (PAM) system for observing an object. The PAM system includes an optical pickup head, an ultrasonic transducer, and an image generation unit. The optical pickup head emits a laser beam to the object, generates a servo signal based on a reflective light beam received from the object, and positions a focus of the laser beam onto the object based on the servo signal. The ultrasonic transducer detects laser-induced ultrasonic waves leaving the object to generate a PAM imaging signal. The image generation unit generates a PAM image of the object based on the PAM imaging signal.
摘要:
An imaging method for microcalcification displays microcalcification distribution by acquiring and overlapping a photoacoustic image of microcalcification and an ultrasonic image of tissue. The image acquired by the present invention, in comparison to images acquired by ultrasonic and X-ray mammography, has advantages in no speckle noises, higher optical contrast, higher ultrasonic resolution, and so on. The present invention also has advantage in safety by adopting a light source having no ionizing radiation. An imaging method for diagnosing breast cancer is also herein disclosed.
摘要:
An ultrasound imaging method includes steps of transmitting a plurality of ultrasound signals by a pulse repetition interval; receiving a plurality of reflected signals of the ultrasound signals; separating a blood flow signal and a clutter signal from the reflected signals by a neural network; calculating a blood flow parameter according to the blood flow signal; determining a blood vessel position according to the blood flow parameter; and adjusting an image signal corresponding to the reflected signals according to the blood flow parameter and the blood vessel position to generate an ultrasound image.
摘要:
Ultrasound imaging adapts as a function of a coherence factor. Various beamforming, image forming or image processing parameters are varied as a function of a coherence factor to improve detail resolution, contrast resolution, dynamic range or SNR. For example, a beamforming parameter such as the transmit or receive aperture size, apodization type or delay is selected to provide maximum coherence. Alternatively or additionally, an image forming parameter, such as the number of beams for coherent synthesis or incoherent compounding, is set as a function of the coherence factor. Alternatively or additionally an image processing parameter such as the dynamic range, linear or nonlinear video filter and/or linear or nonlinear map may also adapt as a function of the coherence factor.
摘要:
A method for dynamically analyzing distribution variation of scatterers is provided and used for dynamically analyzing changes in two or three dimensional scatterer distribution and concentration of ultrasound data by using probability density function along with a moving window technique. The present invention has advantages in low computation load and may be used for real-time analysis. A method for dynamically detecting thermal ablation area and thermal ablation level and a method for dynamically controlling thermal ablation intensity are also provided for non-invasive detection and thermal ablation.
摘要:
A method for dynamically analyzing distribution variation of scatterers is provided and used for dynamically analyzing changes in two or three dimensional scatterer distribution and concentration of ultrasound data by using probability density function along with a moving window technique. The present invention has advantages in low computation load and may be used for real-time analysis. A method for dynamically detecting thermal ablation area and thermal ablation level and a method for dynamically controlling thermal ablation intensity are also provided for non-invasive detection and thermal ablation.
摘要:
Ultrasound imaging adapts as a function of a coherence factor. Various beamforming, image forming or image processing parameters are varied as a function of a coherence factor to improve detail resolution, contrast resolution, dynamic range or SNR. For example, a beamforming parameter such as the transmit or receive aperture size, apodization type or delay is selected to provide maximum coherence. Alternatively or additionally, an image forming parameter, such as the number of beams for coherent synthesis or incoherent compounding, is set as a function of the coherence factor. Alternatively or additionally an image processing parameter such as the dynamic range, linear or nonlinear video filter and/or linear or nonlinear map may also adapt as a function of the coherence factor.