Abstract:
A fluid-sampling apparatus is disclosed. The apparatus includes a valve assembly, an overflow chamber assembly, a vacuum assembly and a sample bottle mounting assembly in particular arrangements. In certain preferred embodiments the overflow chamber assembly has an inner vessel, preferably a standpipe, within an outer vessel which forms an overflow chamber in which fluid from the standpipe can be viewed. The valve assembly preferably includes a sampling valve with an outer shell, an insert member and a pivotable valve member therein. The pivotable valve member preferably has a main body portion with first and second circumferential grooves therein and a diagonal bore therethrough for properly directing fluid from and through particular ports in the insert member based on the position of the valve member. The method includes drawing the fluid from the reactor vessel through a valve assembly into an inner vessel of an overflow chamber assembly, overflowing the fluid from the inner vessel into an outer vessel of the overflow chamber assembly, and thereafter retrieving a sample from the inner vessel.
Abstract:
An improved system, apparatus and method for injecting a chemical from a storage tank into a natural gas or liquefied petroleum gas pipeline at a flow-controlled injection rate is provided. The system, apparatus and method including a pair of positive-displacement pumps driven in substantially complementary fashion by a single driver, a controller controlling the driver, and each pump being fed from the storage tank and discharging chemical into the pipeline. The system, apparatus and method may also include a second pair of positive-displacement pumps having substantially similar displacement and operatively connected to the first pair of positive-displacement pumps, the first pair of positive-displacement pumps being driven in a substantially complementary fashion with the second pair of pumps by a single driver or a pair of drivers.
Abstract:
A monitoring apparatus for carrying out the method is connectable by a telephone line to a central computer system. The apparatus includes first and second input ports for receiving first and second signals, respectively. The first signal represents a volumetric water flow rate while the second signal represents a physical characteristic of the treated water. A processing circuit is connected to the input ports and includes a microprocessor programmable for receiving and totalizing the first signals to a flow volume. The processing circuit also includes a real time clock connected to the microprocessor for continuously computing time. A power supply provides the necessary voltages to the apparatus.The apparatus is arranged to initiate a call to the central computer system upon the occurrence of any one of two or more described conditions such as measured deterioration of water quality, lapse of time or others. Several embodiments are disclosed.
Abstract:
An improved system, apparatus and method for injecting a chemical from a storage tank into a natural gas or liquefied petroleum gas pipeline at a flow-controlled injection rate is provided. The system, apparatus and method including a pair of positive-displacement pumps driven in substantially complementary fashion by a single driver, a controller controlling the driver, and each pump being fed from the storage tank and discharging chemical into the pipeline. The system, apparatus and method may also include a second pair of positive-displacement pumps having substantially similar displacement and operatively connected to the first pair of positive-displacement pumps, the first pair of positive-displacement pumps being driven in a substantially complementary fashion with the second pair of pumps by a single driver or a pair of drivers.
Abstract:
A fluid-sampling method and apparatus are disclosed. The apparatus includes a valve assembly, an overflow chamber assembly, a vacuum assembly and a sample bottle mounting assembly in particular arrangements. In certain preferred embodiments the overflow chamber assembly has an inner vessel, preferably a standpipe, within an outer vessel which forms an overflow chamber in which fluid from the standpipe can be viewed. The valve assembly preferably includes a sampling valve with an outer shell, an insert member and a pivotable valve member therein. The pivotable valve member preferably has a main body portion with first and second circumferential grooves therein and a diagonal bore therethrough for properly directing fluid from and through particular ports in the insert member based on the position of the valve member. The method includes drawing the fluid from the reactor vessel through a valve assembly into an inner vessel of an overflow chamber assembly, overflowing the fluid from the inner vessel into an outer vessel of the overflow chamber assembly, and thereafter retrieving a sample from the inner vessel.
Abstract:
The improved sampling valve assembly includes a diverting valve and an optional isolation valve in series for providing redundant shutoff. The assembly includes rounded-end, side-ported needles (as part of an easily-replaced needle assembly) to pierce the receptacle septum without "coring" and help prevent liquid "carryover." The assembly also has features providing metered, low pressure flow into the receptacle and very low dead volume. A receptacle guide has an interior cavity shaped like the receptacle to guide the inserted receptacle for aligned engagement of the septum with the needle assembly. The needle assembly is removable by removing only the keeper nut.