Abstract:
Various embodiments include systems and methods for search result ranking using machine learning. A goal model can be created using machine learning. Responsive to a search query, a plurality of data factors can be inputted into the goal model to create a model output. Search results can be presented to a user based on the model output.
Abstract:
Described herein are methods and systems for promoting item listings that satisfy a query based on the item listings being assigned to certain categories that have, based on historical click data, exhibited high demand characteristics for the query. Consistent with some embodiments, a certain number of leaf-level categories are identified based on demand data for those categories, and the item listings assigned to those categories are promoted through a weighting factor derived in part based on the click probability score associated with the category. In some embodiments, certain sub-categories may be selected when the demand associated with the child categories of the sub-category is well balanced.
Abstract:
A system and method for assessing excessive accessory listings in search results includes a processor-implemented textual mining module that parses a data field of a document and generates at least one token from the data field. A processor-implemented scoring module calculates a score for the at least one token, with the at least one token score representing a likelihood that the at least one token belongs to one of two binary classifications. The processor-implemented scoring module also calculates a score for the document based on the at least one token score, with the document score representing a probability of the document being in one of the two binary classifications. A processor-implemented decision tree module inputs the document score and document attribute values into a decision tree and generates an output representing a refined score based on the document score and at least one of the document attribute values.
Abstract:
Described herein are methods and systems for promoting item listings that satisfy a query based on the item listings being assigned to certain categories that have, based on historical click data, exhibited high demand characteristics for the query. Consistent with some embodiments, a certain number of leaf-level categories are identified based on demand data for those categories, and the item listings assigned to those categories are promoted through a weighting factor derived in part based on the click probability score associated with the category. In some embodiments, certain sub-categories may be selected when the demand associated with the child categories of the sub-category is well balanced.
Abstract:
A flat-screen television is movably mounted on a wall for movement between a first position, disposed above a fireplace, and a second position, disposed in front of a least part of the fireplace.
Abstract:
Various embodiments include systems and methods for search result ranking using machine learning. A goal model can be created using machine learning. Responsive to a search query, a plurality of data factors can be inputted into the goal model to create a model output. Search results can be presented to a user based on the model output.
Abstract:
A search query that includes a first spelling of a term is received. A second spelling of the term is generated. A first set of items that are associated with the first spelling of the term is accessed, and a second set of items that are associated with the second spelling of the term is accessed. A comparison is performed between the first set to the second set. A determination is made as to how to respond to the search query based, at least in part, on the comparison. The response may include a suggested search query that includes the second spelling of the term. The second spelling may be a suggested spelling correction or an alternative spelling. The response may include search results that are relevant to a search query that includes the first spelling of the term, the second spelling, or both the first and second spelling.
Abstract:
A system and method for assessing excessive accessory listings in search results includes a processor-implemented textual mining module that parses a data field of a document and generates at least one token from the data field. A processor-implemented scoring module calculates a score for the at least one token, with the at least one token score representing a likelihood that the at least one token belongs to one of two binary classifications. The processor-implemented scoring module also calculates a score for the document based on the at least one token score, with the document score representing a probability of the document being in one of the two binary classifications. A processor-implemented decision tree module inputs the document score and document attribute values into a decision tree and generates an output representing a refined score based on the document score and at least one of the document attribute values.
Abstract:
A search query that includes a first spelling of a term is received. A second spelling of the term is generated. A first set of items that are associated with the first spelling of the term is accessed, and a second set of items that are associated with the second spelling of the term is accessed. A comparison is performed between the first set to the second set. A determination is made as to how to respond to the search query based, at least in part, on the comparison. The response may include a suggested search query that includes the second spelling of the term. The second spelling may be a suggested spelling correction or an alternative spelling. The response may include search results that are relevant to a search query that includes the first spelling of the term, the second spelling, or both the first and second spelling.