摘要:
A method of producing hydrocarbon fluids from a subsurface organic-rich rock formation, for example an oil shale formation, in which the oil shale formation contains water-soluble minerals, for example nahcolite, is provided. In one embodiment, the method includes the step of heating the organic-rich rock formation in situ. Optionally, this heating step may be performed prior to any substantial removal of water-soluble minerals from the organic-rich rock formation. In accordance with the method, the heating of the organic-rich rock formation both pyrolyzes at least a portion of the formation hydrocarbons, for example kerogen, to create hydrocarbon fluids, and converts at least a portion of the water-soluble minerals, for example, converts nahcolite to soda ash. Thereafter, the hydrocarbon fluids are produced from the formation.
摘要:
A method for producing hydrocarbons from subsurface formations at different depths is first provided. In one aspect, the method includes the step of heating organic-rich rock, in situ, within a subsurface formation at a first depth. The result of the heating step is that at least a portion of the organic-rich rock is pyrolyzed into hydrocarbon fluids. Preferably, the organic-rich rock of the subsurface formation of the first depth is oil shale. The method also includes providing at least one substantially unheated zone within the formation of the first depth. In this way, the organic-rich rock in that zone is left substantially unpyrolyzed. The method further includes drilling at least one production well through the unheated zone, and completing the at least one production well in a subsurface formation at a second depth that is deeper than the first depth. Thereafter, hydrocarbon fluids are produced through the at least one production well.
摘要:
An in situ method of producing hydrocarbon fluids from an organic-rich rock formation may include heating an organic-rich rock formation, for example an oil shale formation, in situ to pyrolyze formation hydrocarbons, for example kerogen, to form a production fluid containing hydrocarbon fluids. The method may include separating the production fluid into at least a gas stream and a liquid stream, where the gas stream is a low BTU gas stream. The low BTU gas stream is then fed to a gas turbine where it is combusted and is used to generate electricity.
摘要:
A method of producing hydrocarbon fluids from a subsurface organic-rich rock formation, for example an oil shale formation, in which the oil shale formation contains water-soluble minerals, for example nahcolite, is provided. In one embodiment, the method includes the step of heating the organic-rich rock formation in situ. Optionally, this heating step may be performed prior to any substantial removal of water-soluble minerals from the organic-rich rock formation. In accordance with the method, the heating of the organic-rich rock formation both pyrolyzes at least a portion of the formation hydrocarbons, for example kerogen, to create hydrocarbon fluids, and converts at least a portion of the water-soluble minerals, for example, converts nahcolite to soda ash. Thereafter, the hydrocarbon fluids are produced from the formation.
摘要:
An in situ method of producing hydrocarbon fluids from an organic-rich rock formation is provided. The method may include heating an organic-rich rock formation, for example an oil shale formation, in situ to pyrolyze formation hydrocarbons, for example kerogen, to form a production fluid containing hydrocarbon fluids. The method may include separating the production fluid into at least a gas stream and a liquid stream, where the gas stream is a low BTU gas stream. The low BTU gas stream is then fed to a gas turbine where it is combusted and is used to generate electricity.
摘要:
The current invention is a method for modeling the probability of a drill string becoming stuck within a given time frame and a method for applying the model to a well being drilled to reduce the probability of sticking. The model is constructed by performing canonical discriminant analysis on engineering parameters derived from observations taken in historical wells and creating a canonical space with the resulting canonical functions. Posterior probabilities of sticking are then calculated from the historical observations and mapped into the canonical space. To apply the model to a particular well being drilled, the values of the previously derived engineering parameters are calculated from observations in the well being drilled, multiplied by their corresponding canonical coefficients, and summed to obtain a canonical point representation for drilling in that well. This canonical point representation is then mapped into the canonical space to obtain the probability of sticking. The probability of sticking is then compared to probabilities experienced in the past under similar drilling conditions. If the probability of sticking in the well being drilled is found to be higher than average historical probability, it can be reduced by implementing remedial measures that are suggested by simple inspection of the values of the engineering parameters.
摘要:
A testing apparatus which is suitable for applying a stress load to a test specimen is provided. The testing apparatus may be used to simulate lithostatic stress on a test specimen, which may be, for example, a portion of a geologic formation. The testing apparatus may also be used in a method of evaluating the expected production of fluids obtainable from in situ pyrolysis of oil shale.
摘要:
A method of producing hydrocarbon fluids from a subsurface organic-rich rock formation, for example an oil shale formation, in which the oil shale formation contains water-soluble minerals, for example nahcolite, is provided. In one embodiment, the method includes the step of heating the organic-rich rock formation in situ. Optionally, this heating step may be performed prior to any substantial removal of water-soluble minerals from the organic-rich rock formation. In accordance with the method, the heating of the organic-rich rock formation both pyrolyzes at least a portion of the formation hydrocarbons, for example kerogen, to create hydrocarbon fluids, and converts at least a portion of the water-soluble minerals, for example, converts nahcolite to soda ash. Thereafter, the hydrocarbon fluids are produced from the formation.
摘要:
Methods are provided that include the steps of providing wells in a formation, establishing one or more fractures in the formation, such that each fracture intersects at least one of the wells, placing electrically conductive material in the fracture, and applying an electric voltage across the fracture and through the material such that sufficient heat is generated by electrical resistivity within the material to heat and/or pyrolyze organic matter in the formation to form producible hydrocarbons.
摘要:
Methods are provided that include the steps of providing wells in a formation, establishing one or more fractures in the formation, such that each fracture intersects at least one of the wells, placing electrically conductive material in the fracture, and applying an electric voltage across the fracture and through the material such that sufficient heat is generated by electrical resistivity within the material to heat and/or pyrolyze organic matter in the formation to form producible hydrocarbons.