摘要:
There is provided a 3-phase 2-layer armature winding of a rotating electrical machine. The lead-out connection conductor connected to the output terminal is connected to a coil piece positioned at least farther than a first coil piece inside the phase belt counted from the end of the each phase belt, and a coil piece positioned at the end of the phase belt is connected to a coil piece positioned at least farther than the n-th (n is an integer larger than 1) inside the phase belt counted from the other end of the phase belt in the same parallel circuit, by a jumper wire.
摘要:
Sub core sections are arranged at the end portions and the center portion of a stator core, and strand conductors are twisted and transposed by 360 degrees continuously toward the extending direction of winding slot. The length corresponding to transposition pitch 180 degrees of the strand conductors of the stator core is set as one core unit area, the sub core sections including portions whose space factors are different are arranged such that the sum of voltages in the strands induced in the strand conductors in the odd-numbered core unit area from one end portion of the stator core offsets the sum of voltages in the strands induced in the strand conductors in the even-numbered core unit area from the end portion of the core.
摘要:
The depth from the open end of a rotor slot closest to a magnetic pole of a rotary core to a slot bottom or the bottom of a subslot provided as a coolant ventilation path on a rotor slot bottom is made less than the depth of slots at and after a second slot counted from the magnetic pole side in the direction of internal circumference, and when a shortest distance between the bottoms of the rotor slots opposed to each other through a magnetic pole or a shortest distance between the bottoms of the subslots is assumed to be a magnetic pole width of the slots, a magnetic pole width Wp1 of a slot closest to the magnetic pole side is set to 85% or more of a magnetic pole width Wp2 of a second slot counted from the magnetic pole side in the direction of internal circumference.
摘要:
According to one embodiment, there is provided a 3-phase 2-pole 2-layer armature winding, housed in 72 slots provided in a laminated iron core, a winding of each phase including six parallel circuits separated into two phase belts. Upper coil pieces of first and fourth parallel circuits are placed at 3rd, 4th, 7th, and 12th positions, and lower coil pieces of the first and fourth parallel circuits are placed at 1st, 6th, 9th, and 10th positions, upper and lower coil pieces of second and fifth parallel circuits are placed at 2nd, 5th, 8th, and 11th positions, and upper coil pieces of third and six parallel circuits are placed at 1st, 6th, 9th, and 10th positions, and lower coil pieces of the third and six parallel circuits are placed at 3rd, 4th, 7th, and 12th positions, from the center of a pole.
摘要:
According to one embodiment, there is provided a 3-phase 4-pole 2-layer armature winding of a rotating electrical machine. A winding of each phase of the armature winding forms a series coil. Each series coil includes upper coil pieces and lower coil pieces which are connected each other at a connection side coil end and a counter-connection side coil end, the upper coil pieces and lower coil pieces being placed in 54 slots provided in an armature core. At least one coil piece of the upper and lower coil pieces, provided in at least one of an innermost position and an outermost position from the center of a phase belt of each phase, is replaced with a coil piece of an adjacent phase.
摘要:
The depth from the open end of a rotor slot closest to a magnetic pole of a rotary core to a slot bottom or the bottom of a subslot provided as a coolant ventilation path on a rotor slot bottom is made less than the depth of slots at and after a second slot counted from the magnetic pole side in the direction of internal circumference, and when a shortest distance between the bottoms of the rotor slots opposed to each other through a magnetic pole or a shortest distance between the bottoms of the subslots is assumed to be a magnetic pole width of the slots, a magnetic pole width Wp1 of a slot closest to the magnetic pole side is set to 85% or more of a magnetic pole width Wp2 of a second slot counted from the magnetic pole side in the direction of internal circumference.
摘要:
There is provided a 3-phase 2-layer armature winding of a rotating electrical machine. The lead-out connection conductor connected to the output terminal is connected to a coil piece positioned at least farther than a first coil piece inside the phase belt counted from the end of the each phase belt, and a coil piece positioned at the end of the phase belt is connected to a coil piece positioned at least farther than the n-th (n is an integer larger than 1) inside the phase belt counted from the other end of the phase belt in the same parallel circuit, by a jumper wire.
摘要:
An armature winding of an electric rotating machine is provided, which includes at least one armature winding bar composed of a plurality of element wire conductors, wherein the armature winding bar includes an element wire conductor configured to have twisted transposing angles of 180 degrees at one border zone and a middle zone in a winding slot and a twisted transposing angle different from 180 degrees at the other border zone of the winding slot of the element wire conductor.
摘要:
An armature winding of an electric rotating machine is provided, which includes at least one armature winding bar composed of a plurality of element wire conductors, wherein the armature winding bar includes an element wire conductor configured to have twisted transposing angles of 180 degrees at one border zone and a middle zone in a winding slot and a twisted transposing angle different from 180 degrees at the other border zone of the winding slot of the element wire conductor.
摘要:
In an armature, the upper and lower coil pieces in the first and third parallel circuits are located at the 1st, 4th, 6th, 7th, 10th and 12th positions, and the upper and lower coil pieces in the second and fourth parallel circuits are located at the 2nd, 3rd, 5th, 8th, 9th and 11th positions, when relative positions of the upper and lower coil pieces in one of the first and second phase belts are indicated by positions counted in a direction separating away from a center of a pole.