摘要:
A payment system implemented on a mobile device authenticates transactions made via the mobile device. The mobile device generates a public-private key pair and receives an authenticating input from a user of the device. The public key is sent to a secure payment system, and the authenticating input is used to generate a symmetric key that encrypts the private key. After a transaction is initiated, the mobile device receives an authenticating input from the user. The symmetric key is generated from the authenticating input and the mobile device attempts to decrypt the private key from the encrypted private key using the symmetric key generated by the user's input. The decrypted key is used to sign a transaction authorization message which is sent to the secure payment system, along with payment information, which can verify the signed message via the public key. Additional techniques related to secure payments are also disclosed.
摘要:
A payment system implemented on a mobile device authenticates transactions made via the mobile device. The mobile device generates a public-private key pair and receives an authenticating input from a user of the device. The public key is sent to a secure payment system, and the authenticating input is used to generate a symmetric key that encrypts the private key. After a transaction is initiated, the mobile device receives an authenticating input from the user. The symmetric key is generated from the authenticating input and the mobile device attempts to decrypt the private key from the encrypted private key using the symmetric key generated by the user's input. The decrypted key is used to sign a transaction authorization message which is sent to the secure payment system, along with payment information, which can verify the signed message via the public key. Additional techniques related to secure payments are also disclosed.
摘要:
A payment system implemented on a mobile device authorizes and processes transactions. The mobile device generates a public-private key pair and receives payment information. The private key and the payment information are split into a local and a remote fragment. The public key, a private key fragment, and a payment information fragment are sent to a secure payment system, and the other fragments are stored on the mobile device. When a transaction is received by the mobile device to authorize, the mobile device sends a payment fragment to the secure payment system and receives a private key fragment from the secure payment system. The mobile device authorizes the transaction using the private key, recovered from the private key fragments. The secure payment system verifies the transaction using the public key and processes the transaction using the recovered payment information. Additional techniques to process transactions using data splitting are disclosed.
摘要:
A binary bit-string is encoded in a circular image. The circular image encodes substrings of the bit-string in sectors of the circular image and includes redundant bits, error correcting codes, and metadata pertaining to the encoding scheme. To encode the bit-strings, a circular image is generated that includes a center ring and a first ring. Outward from the first ring, additional rings represent bits in the bit-string according to the width of each ring. The exterior of the image includes an outer boundary ring. The width of the boundary rings is used to define the widths representing the value of each ring. To extract a bit-string from an image, the center of the circular image is identified and a direction is selected to evaluate the image outward, determining the boundaries of each ring. The boundaries are analyzed to determine the width of each ring and the encoded bit values.
摘要:
A payment system implemented on a mobile device authorizes and processes transactions. The mobile device generates a public-private key pair and receives payment information. The private key and the payment information are split into a local and a remote fragment. The public key, a private key fragment, and a payment information fragment are sent to a secure payment system, and the other fragments are stored on the mobile device. When a transaction is received by the mobile device to authorize, the mobile device sends a payment fragment to the secure payment system and receives a private key fragment from the secure payment system. The mobile device authorizes the transaction using the private key, recovered from the private key fragments. The secure payment system verifies the transaction using the public key and processes the transaction using the recovered payment information. Additional techniques to process transactions using data splitting are disclosed.
摘要:
A binary bit-string is encoded in a circular image. The circular image encodes substrings of the bit-string in sectors of the circular image and includes redundant bits, error correcting codes, and metadata pertaining to the encoding scheme. To encode the bit-strings, a circular image is generated that includes a center ring and a first ring. Outward from the first ring, additional rings represent bits in the bit-string according to the width of each ring. The exterior of the image includes an outer boundary ring. The width of the boundary rings is used to define the widths representing the value of each ring. To extract a bit-string from an image, the center of the circular image is identified and a direction is selected to evaluate the image outward, determining the boundaries of each ring. The boundaries are analyzed to determine the width of each ring and the encoded bit values.
摘要:
A payment system implemented on a mobile device authenticates transactions made via the mobile device. The mobile device generates a public-private key pair and receives an authenticating input from a user of the device. The public key is sent to a secure payment system, and the authenticating input is used to generate a symmetric key that encrypts the private key. After a transaction is initiated, the mobile device receives an authenticating input from the user. The symmetric key is generated from the authenticating input and the mobile device attempts to decrypt the private key from the encrypted private key using the symmetric key generated by the user's input. The decrypted key is used to sign a transaction authorization message which is sent to the secure payment system, along with payment information, which can verify the signed message via the public key. Additional techniques related to secure payments are also disclosed.
摘要:
A payment system implemented on a mobile device authorizes and processes transactions. The mobile device generates a public-private key pair and receives payment information. The private key and the payment information are split into a local and a remote fragment. The public key, a private key fragment, and a payment information fragment are sent to a secure payment system, and the other fragments are stored on the mobile device. When a transaction is received by the mobile device to authorize, the mobile device sends a payment fragment to the secure payment system and receives a private key fragment from the secure payment system. The mobile device authorizes the transaction using the private key, recovered from the private key fragments. The secure payment system verifies the transaction using the public key and processes the transaction using the recovered payment information. Additional techniques to process transactions using data splitting are disclosed.
摘要:
A binary bit-string is encoded in a circular image. The circular image encodes substrings of the bit-string in sectors of the circular image and includes redundant bits, error correcting codes, and metadata pertaining to the encoding scheme. To encode the bit-strings, a circular image is generated that includes a center ring and a first ring. Outward from the first ring, additional rings represent bits in the bit-string according to the width of each ring. The exterior of the image includes an outer boundary ring. The width of the boundary rings is used to define the widths representing the value of each ring. To extract a bit-string from an image, the center of the circular image is identified and a direction is selected to evaluate the image outward, determining the boundaries of each ring. The boundaries are analyzed to determine the width of each ring and the encoded bit values.
摘要:
A binary bit-string is encoded in a circular image. The circular image encodes substrings of the bit-string in sectors of the circular image and includes redundant bits, error correcting codes, and metadata pertaining to the encoding scheme. To encode the bit-strings, a circular image is generated that includes a center ring and a first ring. Outward from the first ring, additional rings represent bits in the bit-string according to the width of each ring. The exterior of the image includes an outer boundary ring. The width of the boundary rings is used to define the widths representing the value of each ring. To extract a bit-string from an image, the center of the circular image is identified and a direction is selected to evaluate the image outward, determining the boundaries of each ring. The boundaries are analyzed to determine the width of each ring and the encoded bit values.