摘要:
Homoleptic square planar complexes [M(NΛN)2], wherein two identical NΛN bidentate anionic ligands are coordinated to the M(II) metal center, including bidentate square planar complexes of triazolates, possess optical and electrical properties that make them useful for a wide variety of optical and electrical devices and applications. In particular, the complexes are useful for obtaining white or monochromatic organic light-emitting diodes (“OLEDs”). Improved white organic light emitting diode (“WOLED”) designs have improved efficacy and/or color stability at high brightness in single- or two-emitter white or monochrome OLEDs that utilize homoleptic square planar complexes, including bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) (“Pt(ptp)2”).
摘要:
Fluorinated metal-organic frameworks (“FMOFs”) are capable of adsorbing and desorbing gases and molecules. The FMOFs can be arranged in a variety of configurations and have internal hollow channels and cavities. In the FMOFs, hydrogen atoms have been substituted completely or partially with fluorine atoms or fluorinated groups in each linking organic ligand. The FMOFs have high densities, leading to an enhanced volumetric capacity for gas storage.
摘要:
The present invention describes novel “black absorbers” comprising mixed ligand metal-organic complexes to be used in OPVs. The invention describes three representative metal-organic dyes that exhibit strong absorptions spanning the entire UV/Vis portion of the solar light and, in the some cases, well within the NIR. The invention further describes the fabrication of an OPV device by co-doping P1 in a standard polymer/fullerene matrix commonly used in a bulk heterojunction device structure.
摘要:
The present invention includes metal nanoparticles composition and methods of making and using the same by converting a metal (I) to a metal (0) and forming one or more metal nanoparticles from the metal (0). The one or more metal nanoparticles are stabilized with one or more biocompatible stabilizers to prevent agglomeration and make them amenable for biomedical applications.
摘要:
Fluorinated metal-organic frameworks (“FMOFs”) are capable of adsorbing and desorbing gases and molecules. The FMOFs can be arranged in a variety of configurations and have internal hollow channels and cavities. In the FMOFs, hydrogen atoms have been substituted completely or partially with fluorine atoms or fluorinated groups in each linking organic ligand. The FMOFs have high densities, leading to an enhanced volumetric capacity for gas storage.
摘要:
Fluorinated metal-organic frameworks (“FMOFs”) are capable of adsorbing and desorbing hydrocarbons, namely, C6-C8 hydrocarbon oil components (n-hexane, cyclohexane, benzene and toluene). FMOFs can be arranged in a variety of configurations and have internal hollow channels and cavities. In FMOFs, hydrogen atoms have been substituted completely or partially with fluorine atoms or fluorinated groups in each linking organic ligand. These FMOFs can adsorb C6-C8 hydrocarbons, up to 500 kg/m3 as demonstrated for toluene, through a combination of superhydrophobicity and capillary action. No water adsorption was detectable even under extreme conditions including moist air near 100% relative humidity and immersion in water for multiple weeks, demonstrating far superior water resistance to BPL carbon and zeolites. These materials are stable and can be readily recycled by simple desorption many times. The FMOFs have applications in removal or containment of organics, particularly in the fields of oil spill cleanup and hydrocarbon storage.
摘要:
A new technique to stabilize transition metal phosphors in a wide variety of stimuli-sensitive polymers and gels is disclosed herein. Other than stabilization in stimuli sensitive/biocompatible matrix some of these transition metal based phosphors are also shown to act as phosphorescent crosslinkers that physically or chemically crosslink polymeric chains to form micro/nanoparticles. The microspheres/nanospheres of the present invention show decreased size and photoluminescence enhancement with particularly high sensitization at physiological pH and temperature. The so formed phosphorescent micro/nanospheres are useful for biological or environmental applications including biological labeling, imaging, and optical sensing. The techniques in the present invention enable usage of imaging agents and sensors at very low concentrations and also minimize or eliminate the usage of toxic chemical crosslinkers typically used to synthesize polymeric micro/nanoparticles.
摘要:
Homoleptic square planar complexes [M(NΛN)2], wherein two identical NΛN bidentate anionic ligands are coordinated to the M(II) metal center, including bidentate square planar complexes of triazolates, possess optical and electrical properties that make them useful for a wide variety of optical and electrical devices and applications. In particular, the complexes are useful for obtaining white or monochromatic organic light-emitting diodes (“OLEDs”). Improved white organic light emitting diode (“WOLED”) designs have improved efficacy and/or color stability at high brightness in single- or two-emitter white or monochrome OLEDs that utilize homoleptic square planar complexes, including bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) (“Pt(ptp)2”).
摘要翻译:同位素平面复合物[M(NΛN)2],其中两个相同的N N N二齿阴离子配体与M(II)金属中心配位,包括三唑的二齿正方形平面复合物,具有光学和电学性质,使其可用于宽 各种光电器件及应用。 特别地,该复合物可用于获得白色或单色有机发光二极管(“OLED”)。 改进的白色有机发光二极管(“WOLED”)设计在单亮度或双发射体白色或单色OLED中的高亮度下具有改善的功效和/或颜色稳定性,其使用均匀的平面复合物,包括双[3,5-双( 2-吡啶基)-1,2,4-三唑并[铂(II)(“Pt(ptp)2”)。
摘要:
Fluorinated metal-organic frameworks (“FMOFs”) are capable of adsorbing and desorbing hydrocarbons, namely, C6-C8 hydrocarbon oil components (n-hexane, cyclohexane, benzene and toluene). FMOFs can be arranged in a variety of configurations and have internal hollow channels and cavities. In FMOFs, hydrogen atoms have been substituted completely or partially with fluorine atoms or fluorinated groups in each linking organic ligand. These FMOFs can adsorb C6-C8 hydrocarbons, up to 500 kg/m3 as demonstrated for toluene, through a combination of superhydrophobicity and capillary action. No water adsorption was detectable even under extreme conditions including moist air near 100% relative humidity and immersion in water for multiple weeks, demonstrating far superior water resistance to BPL carbon and zeolites. These materials are stable and can be readily recycled by simple desorption many times. The FMOFs have applications in removal or containment of organics, particularly in the fields of oil spill cleanup and hydrocarbon storage.