Abstract:
A feeding mechanism and method for feeding objects singulated from a bulk mass of objects includes receiving the bulk mass into a hopper system having a hopper screw set including first and second hopper screws and a plurality of feeding pockets defined by the thread forms of the hopper screws. Rotation of the hopper screws tumbles the bulk mass to cascade and singulate individual objects into respective feed pockets. An object set including at least one singulated object is discharged from the hopper screw set by rotation of the hopper screws. A discharge assembly including a ramp and star wheel receives the discharged object set, and transfers the object set to a discharge outlet. The object set output from the discharge outlet is received by a target defined by a receiving article. In one example, the object is rounded, the target is an opening of a container.
Abstract:
A feeding mechanism and method for feeding objects singulated from a bulk mass of objects includes receiving the bulk mass into a hopper system having a hopper screw set including first and second hopper screws and a plurality of feeding pockets defined by the thread forms of the hopper screws. Rotation of the hopper screws tumbles the bulk mass to cascade and singulate individual objects into respective feed pockets. An object set including at least one singulated object is discharged from the hopper screw set by rotation of the hopper screws. A discharge assembly including a ramp and star wheel receives the discharged object set, and transfers the object set to a discharge outlet. The object set output from the discharge outlet is received by a target defined by a receiving article. In one example, the object is rounded, the target is an opening of a container.
Abstract:
A rotary orienter includes a turret rotatable about a central axis and at least one rotation pad rotatably mounted to the turret and selectively rotatable about a pad axis. The turret rotates to index the rotation pad to a receiving station, a discharge station and at least one actuating station distributed radially about the central axis. The actuating station is intermediate the receiving station and discharge station. The rotation pad indexes from the receiving station in a locked condition such that rotation of the rotation pad is prevented, and is selectively unlocked by the actuating station such that the unlocked rotation pad rotates during indexing of the turret from the actuating station to the discharge station to reorient an object received onto the rotation pad at the receiving station in a received orientation to a predetermined orientation for discharge of the object in the predetermined orientation at the discharge station.
Abstract:
A divider system for diverting objects from an infeed lane into one or more discharge lanes includes a dividing screw set, a discharge screw set, and a diverting mechanism. The dividing screw set conveys a sequence of objects to an output end of the screw set where the objects are divided by rotation of the dividing screw set and outputted alternately to first and second discharge screws of the discharge screw set to form a first series of objects conveyed by the first discharge screw and a second series of objects conveyed by the second discharge screw. The divider system includes a diverting mechanism which can be selectively actuated to divert objects from one discharge screw to the other discharge screw to form a diverted group.
Abstract:
A driver for coupling a driving device and a driven device includes a core defining a plurality of corner chamfers and a casing formed on and encasing the core. The casing has a contoured perimeter surface and a variable casing thickness, and is compressible during an interference fit installation to a coupling socket to provide a non-lubricated coupling which has zero backlash and substantially no running noise. The core is made of a metal-based material and includes a shaft bore for receiving an input shaft. In an illustrative example, the driver core is made of a stainless steel core and the casing is made of a high wear thermoset urethane material. The metal core can be recycled from the coated driver by removal of the polymeric casing, then recoated with a new casing to form a new coated driver including the recycled metal core.
Abstract:
An adjusting device for making x-y adjustments of a repositionable member from a single point includes first and second extendable members each defining an extension axis and including an extension rod, an extendable portion operatively attached to and adjustable relative to the extension rod along the extension axis to an extended length, and a clamping member attached to the extendable portion and configured to receive a rotatable member including the repositionable member. The clamping members define a rotation axis perpendicular to the extension axes and are lockable to prevent rotation of the rotatable member around the rotation axis. The adjusting device includes a synchronizing mechanism connected to the first and second extendable members and operable to simultaneously adjust the extended length of the first and second extendable portions such that the extended length of the first extendable portion and the extended length of the second extendable portion are equal.
Abstract:
A divider system for diverting objects from an infeed lane into one or more discharge lanes includes a dividing screw set, a discharge screw set, and a diverting mechanism. The dividing screw set conveys a sequence of objects to an output end of the screw set where the objects are divided by rotation of the dividing screw set and outputted alternately to first and second discharge screws of the discharge screw set to form a first series of objects conveyed by the first discharge screw and a second series of objects conveyed by the second discharge screw. The divider system includes a diverting mechanism which can be selectively actuated to divert objects from one discharge screw to the other discharge screw to form a diverted group.
Abstract:
A packaging system and method forms a bundled group of articles in an oriented arrangement, by applying a wrapping material to the articles via the bottoms of the articles while the oriented arrangement of articles is inverted and retained by a pallet. The wrapping material may be a sleeve of shrinkable material applied to the inverted end of the articles and shrunk to conform to the articles and form a base enclosing the bottoms of the articles. The articles are retained by the pallet in the oriented arrangement during the inverting, sleeving and bundling of the group of articles, to provide a bundled group including the articles securely contained by the shrunk wrapping in the oriented arrangement. The bundled group may include more than one type of article. The pallet may be operable to retain a top portion of the article, which may have an irregular or asymmetrical shape.
Abstract:
A feeding mechanism and method for feeding objects singulated from a bulk mass of objects includes receiving the bulk mass into a hopper system having a hopper screw set including first and second hopper screws and a plurality of feeding pockets defined by the thread forms of the hopper screws. Rotation of the hopper screws tumbles the bulk mass to cascade and singulate individual objects into respective feed pockets. An object set including at least one singulated object is discharged from the hopper screw set by rotation of the hopper screws. A discharge assembly including a ramp and star wheel receives the discharged object set, and transfers the object set to a discharge outlet. The object set output from the discharge outlet is received by a target defined by a receiving article. In one example, the object is rounded, the target is an opening of a container.