Abstract:
The present invention relates to a medical implant which is equipped with an antimicrobial composition which comprises silicon dioxide and metal-containing nanoparticles, and processes for producing the medical implant.
Abstract:
A textile implant includes at least one thread having a polymeric core and a polymeric sheath which surrounds the polymeric core at least partly, wherein the sheath includes a composition including at least one silica-supported antimicrobial active agent.
Abstract:
A carrier system for transport of functional chemicals in substrates, such as fiber and plastic materials, comprises a carrier compound and at least one functional chemical, whereby the carrier compound consists of micelles, liposomes, lyotropic liquid crystals, or intercalation compounds. The functional chemical that is transported by the carrier compound migrates into the substrate and has an anisotropic distribution therein. Methods for modification, for activation and deactivation in a subsequent application on substrates are described.
Abstract:
A multifunctional, responsive functional layer on a substrate, such as textiles, paper and plastic materials, includes at least one first and a second functional component, of which at least one of the second functional components meets the chemical-functional and constitutional specification for responsive behavior and thereby can be reversibly switched by an outer stimulus. The first and second functional components differ with respect to the intrinsically specified properties thereof and are matched to each other, wherein at least one of the functional components on the substrate is present as a physical-chemical compound. Methods are disclosed for producing the multifunctional, responsive functional layer, which enable the combination of functions, such as moisture management, soil release, antistatic, hydrophobicity, hydrophilicity, oleophobicity, controlled release, and conductivity.
Abstract:
A flame spray pyrolysis method for producing a doped silica(SiO2) having antimicrobial and/or antibacterial and/or antifungal effect and being in the form of particles is disclosed. Said flame made doped silica comprises at least one functional dopant consisting of at least one antimicrobial and/or antibacterial and/or antifungal acting metal and/or metal-oxide, and is produced starting from a precursor solution comprising at least one functional dopant precursor, in particular a silver and/or copper comprising precursor, and at least one silica precursor in an organic solvent. Such doped silica is suitable for being incorporated within e.g. polymeric materials or for being used as impregnating material.