Abstract:
A method of providing a stereoscopic X-ray image is provided. The method includes acquiring X-ray images captured at respective rotation angles with respect to a part of a patient to be examined while rotating around the part to be examined, and in response to information regarding a viewpoint with respect to the part to be examined being input, using X-ray images at respective rotation angles corresponding to the viewpoint from among the acquired X-ray images to generate a three-dimensional (3D) X-ray image.
Abstract:
A radiation signal detection apparatus includes a filter unit configured to allow penetration of a component of radiation that passed through a subject, the filter unit including one or more unit filters configured to allow penetration of only a component in a predetermined energy band of the radiation, and a sensor unit, including one or more first unit sensors configured to convert only the component of the radiation for which the penetration is allowed by the unit filters into a first electric signal, one or more second unit sensors configured to convert a component in all energy bands of the radiation into a second electric signal, and a radiation signal detector configured to detect a first radiation signal and a second radiation signal by respectively using the first electric signal of the first unit sensors and the second electric signal of the second unit sensors.
Abstract:
An apparatus for managing radiation doses is provided. The apparatus includes an information extraction unit configured to extract information about a patient to be examined, information about an image acquired by examining a bodily region of the patient using a radiographic apparatus, and information about the examination performed by the radiographic apparatus, a radiation dose calculation unit configured to calculate, using the image information, an effective dose generated by the radiographic apparatus when acquiring the image, and a dose data storage unit configured to store effective dose data in a database, the effective dose data including the calculated effective dose, the patient information, and the examination information.
Abstract:
An apparatus for managing radiation doses is provided. The apparatus includes an information extraction unit configured to extract information about a patient to be examined, information about an image acquired by examining a bodily region of the patient using a radiographic apparatus, and information about the examination performed by the radiographic apparatus, a radiation dose calculation unit configured to calculate, using the image information, an effective dose generated by the radiographic apparatus when acquiring the image, and a dose data storage unit configured to store effective dose data in a database, the effective dose data including the calculated effective dose, the patient information, and the examination information.
Abstract:
A method of providing a stereoscopic X-ray image is provided. The method includes acquiring X-ray images captured at respective rotation angles with respect to a part of a patient to be examined while rotating around the part to be examined, and in response to information regarding a viewpoint with respect to the part to be examined being input, using X-ray images at respective rotation angles corresponding to the viewpoint from among the acquired X-ray images to generate a three-dimensional (3D) X-ray image.
Abstract:
A method of dividing a coverage area of a robot and a device for the same. That is, a method of producing a space map for a robot to work and dividing the space map into at least one segment and a device for the same. The method includes producing an occupancy grid map composed of grid points that are probabilistically distributed by sensing a distance from an obstacle, producing a configuration space map by increasing the thickness of an obstacle and a wall in the occupancy grid map on the basis of the radius and size of the robot, and dividing an area by sweeping the area with a band-typed slice in the configuration space map.
Abstract:
A method of dividing a coverage area of a robot and a device for the same. That is, a method of producing a space map for a robot to work and dividing the space map into at least one segment and a device for the same. The method includes producing an occupancy grid map composed of grid points that are probabilistically distributed by sensing a distance from an obstacle, producing a configuration space map by increasing the thickness of an obstacle and a wall in the occupancy grid map on the basis of the radius and size of the robot, and dividing an area by sweeping the area with a band-typed slice in the configuration space map.