Abstract:
Methods for applying a liner-free, or liner-less label, to a substrate, particularly glass or plastic (e.g., PET) substrates are described herein. The method includes applying an adhesive composition, such as a polymeric coating, to a label face sheet, activating the adhesive composition with an activating fluid, and contacting the label to the substrate. The activating fluid is preferably a mixture of water and one or more organic solvents, such as low molecular weight alcohols. In some embodiments, the labels exhibit a percent fiber tear greater than about 50, 55, 60, 65, 70, 75, 80, 85, 90, or 95% after one, two, three, four, or five minutes. In particular embodiments, the labels exhibits a percent fiber tear greater than 60, 65, 70, 75, 80, 85, 90, or 95% after two minutes.
Abstract:
Resealable systems for consumer packaging, such as food packaging, are described herein. The system includes one or more anchor points and one or more cling coatings. The anchor points can be introduced into or onto the packaging material during manufacture, such as by co-extrusion. Alternatively, the anchor points can be affixed to the packaging material after manufacture, such as with a pressure sensitive adhesive. The cling coatings can be applied to the packaging material during or after manufacture. For example, the cling coatings can be spot coated or pattern coated onto the desired location. The cling coatings are selective, that is they do not attach to themselves but only attach to the anchor point. The cling coatings transfer little or no material over time resulting in more consistent performance over time than pressure sensitive adhesives.
Abstract:
Methods for applying a liner-free, or liner-less label, to a substrate, particularly glass or plastic (e.g., PET) substrates are described herein. The method includes applying an adhesive composition, such as a polymeric coating, to a label face sheet, activating the adhesive composition with an activating fluid, and contacting the label to the substrate. The activating fluid is preferably a mixture of water and one or more organic solvents, such as low molecular weight alcohols. In some embodiments, the labels exhibit a percent fiber tear greater than about 50, 55, 60, 65, 70, 75, 80, 85, 90, or 95% after one, two, three, four, or five minutes. In particular embodiments, the labels exhibits a percent fiber tear greater than 60, 65, 70, 75, 80, 85, 90, or 95% after two minutes.
Abstract:
An apparatus and method is described herein for automatically labeling using labels having a fluid activatable adhesive along the back surface of the label. The apparatus includes a dispensing magazine for retaining a stack of labels, a first rotating transfer member, and an adhesive activation station aligned with the rotating transfer member. The dispensing magazine includes a dispensing end and a loading end. The first rotating transfer member is rotated in close proximity to the stack of labels and includes at least one belt having multiple openings for communication of suction to enable the belt to receive and releasably secure the front of the labels. The adhesive activation station is configured to apply to a fluid to the back of the labels to activate the adhesive such that the adhesive becomes tacky along the back surface of the label.
Abstract:
A fluid activatable adhesive for a liner-free label and methods of using are described. Preferably, the adhesive composition includes a polymer, such as an emulsion polymer formed from monomers selected from the group consisting of butyl acrylate, 2-ethylhexyl acrylate, methyl acrylate, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), a salt of AMPS, such as its sodium salt, styrene, and combinations thereof. The adhesive composition adheres to the liner-free label to the surface of a substrate that is at room temperature, at room temperature and wet, cold, or cold and wet. In preferred embodiments, the substrate is glass or plastic, such as polyethylene terephthalate.
Abstract:
An apparatus and method for automatically modulating vacuum applied to a vacuum cup are described herein. More particularly an automated labeling apparatus and method for applying labels onto containers using a vacuum based transport mechanism is described herein.
Abstract:
An apparatus and method is described herein for applying labels to containers. The apparatus includes a guidance mechanism configured to provide a path for receiving a plurality of labels having a back surface with a fluid activatable adhesive that is non-tacky until activated, an adhesive activation station aligned with at least a portion of the guidance mechanism and configured to apply to the back surface of said labels a fluid to activate said adhesive along said back surface of said labels, and a label application station configured to apply at least one of said labels with said activated adhesive onto an exterior surface of a corresponding object located on a rotatable platform. The guidance mechanism includes at least one rotatable transfer member having a plurality of pallets. Each of the pallets includes multiple openings for communication of suction to enable at least one of the pallets to receive and releasably secure a front of the labels onto at least one pallet, and one or more rollers connected to each of the pallets by one or more tunable complaint members. The label application station includes a servo motor configured to drive a linear speed and a rotational direction of the platform.
Abstract:
Methods for applying a liner-free, or liner-less label, to a substrate, particularly glass or plastic (e.g., PET) substrates are described herein. The method includes applying an adhesive composition, such as a polymeric coating, to a label face sheet, activating the adhesive composition with an activating fluid, and contacting the label to the substrate. The activating fluid is preferably a mixture of water and one or more organic solvents, such as low molecular weight alcohols. In some embodiments, the labels exhibit a percent fiber tear greater than about 50, 55, 60, 65, 70, 75, 80, 85, 90, or 95% after one, two, three, four, or five minutes. In particular embodiments, the labels exhibits a percent fiber tear greater than 60, 65, 70, 75, 80, 85, 90, or 95% after two minutes.
Abstract:
An apparatus and method is described herein for automatically labeling using labels having a fluid activatable adhesive along the back surface of such label. The apparatus has multiple pallets each being positionable with the lowermost label of a stack of one or more labels to releasably secure by suction the label against the pallet, and multiple pads each being positionable with respect to pallets to receive labels from the pallets and then releasably retain such labels until application onto containers. Fluid for activating adhesive is applied by an applicator onto labels retained upon the pad to change the fluid activatable adhesive along the label's back surface from a non-tacky state to a tacky state just prior to application of the label onto container.
Abstract:
An apparatus and method is described herein for automatically labeling using labels having a fluid activatable adhesive along the back surface of such label. The apparatus has multiple pallets each being positionable with the lowermost label of a stack of one or more labels to releasably secure by suction the label against the pallet, and multiple pads each being positionable with respect to pallets to receive labels from the pallets and then releasably retain such labels until application onto containers. Fluid for activating adhesive is applied by an applicator onto labels retained upon the pad to change the fluid activatable adhesive along the label's back surface from a non-tacky state to a tacky state just prior to application of the label onto container.