Abstract:
The present disclosure is directed to a method and apparatus for continuous production of composites of carbon nanotubes and electrode active material from decoupled sources. Composites thusly produced may be used as self-standing electrodes without binder or collector. Moreover, the method of the present disclosure may allow more cost-efficient production while simultaneously affording control over nanotube loading and composite thickness.
Abstract:
Methods of making single walled carbon nanotubes (SWNTs) including a single step for preparing a homogeneous dispersion of SWNTs in a battery electrode powder. The method may comprise providing a reactor in fluid communication with a mixer, wherein an aerosol containing SWNTs is transmitted from the reactor directly to the mixer containing a battery electrode powder.
Abstract:
A method of producing a composite product is provided. The method includes providing a fluidized bed of metal oxide particles in a fluidized bed reactor, providing a catalyst or catalyst precursor in the fluidized bed reactor, providing a carbon source in the fluidized bed reactor for growing carbon nanotubes, growing carbon nanotubes in a carbon nanotube growth zone of the fluidized bed reactor, and collecting a composite product comprising metal oxide particles and carbon nanotubes.
Abstract:
A method of producing a composite product is provided. The method includes providing a fluidized bed of metal oxide particles in a fluidized bed reactor, providing a catalyst or catalyst precursor in the fluidized bed reactor, providing a carbon source in the fluidized bed reactor for growing carbon nanotubes, growing carbon nanotubes in a carbon nanotube growth zone of the fluidized bed reactor, and collecting a composite product comprising metal oxide particles and carbon nanotubes.
Abstract:
The present disclosure is directed to a method and apparatus for continuous production of composites of carbon nanotubes and electrode active material from decoupled sources. Composites thusly produced may be used as self-standing electrodes without binder or collector. Moreover, the method of the present disclosure may allow more cost-efficient production while simultaneously affording control over nanotube loading and composite thickness.
Abstract:
Methods of making single walled carbon nanotubes (SWNTs) including a single step for preparing a homogeneous dispersion of SWNTs in a battery electrode powder. The method may comprise providing a reactor in fluid communication with a mixer, wherein an aerosol containing SWNTs is transmitted from the reactor directly to the mixer containing a battery electrode powder.
Abstract:
The present disclosure is directed to a method and apparatus for continuous production of composites of carbon nanotubes and electrode active material from decoupled sources. Composites thusly produced may be used as self-standing electrodes without binder or collector. Moreover, the method of the present disclosure may allow more cost-efficient production while simultaneously affording control over nanotube loading and composite thickness.
Abstract:
A method of producing a composite product is provided. The method includes providing a fluidized bed of metal oxide particles in a fluidized bed reactor, providing a catalyst or catalyst precursor in the fluidized bed reactor, providing a carbon source in the fluidized bed reactor for growing carbon nanotubes, growing carbon nanotubes in a carbon nanotube growth zone of the fluidized bed reactor, and collecting a composite product comprising metal oxide particles and carbon nanotubes.
Abstract:
The present disclosure relates to flexible batteries made of one or more self-standing flexible anodes and cathodes. The flexible batteries are free of binder, wherein the output of the batteries is substantially the same when bent, rolled, or folded compared to the output when flat.
Abstract:
Methods and apparatuses are provided for the production of homogeneous dispersions of nanostructures within a matrix, which may be used as precursors of carbon-reinforced or boron nitride-reinforced composite materials. An apparatus for producing a nanostructure dispersion comprises a reactor and a mixing chamber, wherein the reactor is configured to produce an aerosol of nanostructures and is in fluidic communication with the mixing chamber. A matrix material is provided in the mixing chamber, and the aerosol of nanostructures can disperse into the matrix material to form a nanostructure dispersion. The apparatus may further comprise a matrix tank comprising a matrix material, wherein the matrix material is transferred to the mixing chamber. An aerosol of matrix particles may be produced from the matrix material and provided in the mixing chamber, so as to produce a fine dispersion of nanostructures in the matrix. The apparatus may be configured to continuously produce a nanostructure dispersion.