摘要:
In order to provide a novel spinel type lithium transition metal oxide (LMO) having excellent power performance characteristics, in which preferably both the power performance characteristics and the cycle performance at high temperature life characteristics may be balanced, a novel spinel type lithium transition metal oxide with excellent power performance characteristics is proposed by defining the inter-atomic distance Li—O to be 1.978 Å to 2.006 Å as measured by the Rietveld method using the fundamental method in a lithium transition metal oxide represented by the general formula Li1+xM2−xO4 (where M is a transition metal consisting of three elements Mn, Al and Mg and x is 0.01 to 0.08).
摘要:
In order to provide a novel spinel type lithium transition metal oxide (LMO) having excellent power performance characteristics, in which preferably both the power performance characteristics and the cycle performance at high temperature life characteristics may be balanced, a novel spinel type lithium transition metal oxide with excellent power performance characteristics is proposed by defining the inter-atomic distance Li—O to be 1.978 Å to 2.006 Å as measured by the Rietveld method using the fundamental method in a lithium transition metal oxide represented by the general formula Li1+xM2−xO4 (where M is a transition metal consisting of three elements Mn, Al and Mg and x is 0.01 to 0.08).
摘要:
In a lithium transition metal oxide having a layered structure, one is provided, which is particularly excellent as a positive electrode active material of a battery on board of an electric vehicle or a hybrid vehicle in particular. A lithium transition metal oxide having a layered structure is proposed, wherein the ratio of the crystallite diameter determined by Measurement Method 1 according to the Rietveld method with respect to the mean powder particle diameter (D50) determined by the laser diffraction/scattering-type particle size distribution measurement method is 0.05 to 0.20.
摘要:
In a lithium transition metal oxide having a layered structure, one is provided, which is particularly excellent as a positive electrode active material of a battery on board of an electric vehicle or a hybrid vehicle in particular. A lithium transition metal oxide having a layered structure is proposed, wherein the ratio of the crystallite diameter determined by Measurement Method 1 according to the Rietveld method with respect to the mean powder particle diameter (D50) determined by the laser diffraction/scattering-type particle size distribution measurement method is 0.05 to 0.20.
摘要:
A positive electrode active material for a battery, consisting essentially of manganese dioxide, contains 5 to 400 ppm of magnesium or 0.001 to 3.0% by weight of titanium, thereby achieving even higher performance of a battery, such as enhanced pulse characteristics.